Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 258: 121817, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810598

RESUMO

Electrochemical uranium extraction (EUE) from seawater is a very promising strategy, but its practical application is hindered by the high potential for electrochemical system, as well as the low selectivity, efficiency, and poor stability of electrode. Herein, we developed creatively a low potential strategy for persistent uranium recovery by electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites coupled with indirect reduction of uranium, finally achieving high selectivity, efficient and persistent uranium recovery. As-designed titanium dioxide rich in oxygen vacancies (TiO2-VO) electrode displayed an EUE efficiency of ∼99.9 % within 180 min at a low potential of 0.09 V in simulated seawater with uranium of 5∼20 ppm. Moreover, the TiO2-VO electrode also showed high selectivity (89.9 %) to uranium, long-term cycling stability and antifouling activity in natural seawater. The excellent EUE property was attributed to the fact that electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites enhanced EUE cycling process and achieved persistent uranium recovery. The continuous regeneration of oxygen vacancies not only reduced the adsorption energy of U(VI)O22+ but also serve as a storage and transportation channel for electrons, accelerating electron transfer from Ti(III) to U(VI) at solid-liquid interface and promoting EUE kinetic rate.


Assuntos
Oxigênio , Água do Mar , Titânio , Urânio , Urânio/química , Titânio/química , Oxigênio/química , Água do Mar/química , Eletrodos , Eletroquímica , Técnicas Eletroquímicas , Poluentes Radioativos da Água/química
2.
Brain Behav ; 14(2): e3391, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340089

RESUMO

OBJECTIVE: Our study was conducted aimed at investigating the potential correlation between cerebral microangiopathy and autonomic nervous dysfunction. METHODS: We initially included 164 hospitalized patients with cerebral microangiopathy at our hospital from November 2019 to January 2021. Based on the inclusion and exclusion criteria, a final total of 162 patients with cerebral microangiopathy were selected. According to the patient's Autonomic Symptom Profile (ASP) score, patients with a score greater than 22 were categorized into a group with concomitant autonomic dysfunction (71 cases, combined group), while those with a score below 22 were categorized into a group of isolated cerebral microangiopathy (83 cases, cerebral microangiopathy group). The general data and laboratory examination results of the two groups were analyzed, and Pearson correlation analysis was performed to evaluate the correlation between cerebral microangiopathy and autonomic dysfunction, as well as the influencing factors of cerebral microangiopathy patients combined with autonomic dysfunction. RESULTS: There were no significant differences between the two groups in terms of sex, BMI, smoking, drinking, family dementia history, diabetes, hypothyroidism, carotid atherosclerosis, obstructive sleep apnea hypopnea syndrome, hyperuricemia, hyperlipidemia, chronic obstructive pulmonary disease, Hamilton Anxiety Scale score, Hamilton Depression Scale score, 24-h mean systolic blood pressure (SBP), 24-h mean diastolic blood pressure DBP, daytime mean systolic blood pressure (dSBP), daytime mean diastolic blood pressure, nighttime mean systolic blood pressure (nSBP), nighttime mean diastolic blood pressure, 24-h systolic blood pressure standard deviation (SBPSD), 24-h diastolic blood pressure standard deviation, daytime diastolic blood pressure standard deviation, nighttime diastolic blood pressure standard deviation (nDBPSD), nDBPSD (p > .05). However, significant differences were observed between the two groups regarding age, history of coronary heart disease, hypertension, leukoaraiosis, cognitive function, ASP score, SSR, 24-h SBPSD, daytime systolic blood pressure standard deviation (dSBPSD), nighttime systolic blood pressure standard deviation (nSBPSD), standard deviation of RR interval (SDNN), root mean square value of successive RR interval difference (RMSSD), high-frequency component (HF), and low-frequency component (LF) (p < .05). Moreover, the levels of TG, TC, HDL-C, and LDL-C did not show significant differences between the two groups (p > .05), but there were significant differences in blood uric acid and homocysteine (Hcy) levels (p < .05). Age, history of leukoaraiosis, cognitive function assessment, blood uric acid, Hcy levels, 24-h SBPSD, dSBPSD, and nSBPSD showed positive correlations with ASP scores and SSR in patients with cerebral microangiopathy (p < .001). In contrast, hypertension, SDNN, RMSSD, HF, and LF showed negative correlations with ASP scores and SSR (p < .001). Moreover, coronary heart disease was negatively correlated with ASP scores but positively correlated with SSR (p < .001). The independent variables included age, history of leukoaraiosis, cognitive function assessment, ASP score, SSR, blood uric acid, Hcy, bradykinin, coronary heart disease, hypertension, 24-h SBPSD, dSBPSD, nSBPSD, SDNN, RMSSD, HF, and LF, which were indicators with differences in general data and laboratory indicators. The dependent variable was patients with cerebral microangiopathy combined with autonomic nervous dysfunction. The analysis results showed that age, history of leukoaraiosis, ASP score, SSR, 24-h SBPSD, dSBPSD, nSBPSD, SDNN, RMSSD, HF, and LF were the influencing factors of patients with cerebral microangiopathy complicated with autonomic nervous dysfunction. CONCLUSION: We demonstrates that age, history of leukoaraiosis, cognitive function assessment, blood uric acid, Hcy level, 24-h SBPSD, dSBPSD, nSBPSD, blood pressure, SDNN, RMSSD, HF, LF, and coronary heart disease were highly associated with cerebral microangiopathy with autonomic dysfunction. Furthermore, the influencing factors of cerebral microangiopathy with autonomic dysfunction are age, history of leukoaraiosis, ASP score, SSR, blood pressure variability, and HRV.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doença das Coronárias , Hipertensão , Leucoaraiose , Humanos , Ácido Úrico , Frequência Cardíaca/fisiologia , Doenças do Sistema Nervoso Autônomo/etiologia
3.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180252

RESUMO

In density-functional theory, the exchange-correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r'), representing the probability depletion of finding an electron at r' due to an electron at r. Accurate knowledge of n̄xc(r,r') has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron-electron cusp using finite basis sets. Focusing on Hooke's atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke's atoms, the error introduced by the description of the electron-electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew-Burke-Ernzerhof and local density approximation XC hole models are assessed.

4.
CNS Drugs ; 38(1): 67-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030867

RESUMO

BACKGROUND: Ischemic stroke is a major cause of disability and death worldwide. A narrow therapeutic window profoundly constrained the utilization of alteplase. OBJECTIVES: To investigate therapeutic effects and safety of intravenous recombinant human prourokinase (rhPro-UK) in patients with acute ischemic stroke (AIS) in the 4.5-6 h therapeutic time windows. METHODS: We conducted a phase IIa, randomized, and open-label multicenter clinical trial. Between 4.5 and 6 h after the onset of AIS, patients were randomly administrated to receive intravenous rhPro-UK at a 50 mg or 35 mg dose. The primary endpoint was excellent functional outcome defined as modified Rankin scale (mRS) score of 1 or less at 90 days. The secondary outcome was the treatment response, which was based on an at least 4-point improvement from baseline National Institutes of Health stroke scale (NIHSS) score at 24 h after drug administration. Safety endpoints included death, symptomatic intracerebral hemorrhage (sICH), and other serious adverse events. RESULTS: We enrolled 80 patients in the 4.5-6 h therapeutic time windows at 17 medical centers in China from December 2016 to November 2017. A total of 39 patients were treated with 50 mg rhPro-UK, and 39 were treated with 35 mg rhPro-UK. Compared with the baseline, the NIHSS score at 24 h and days 7, 14, 30, and 90 was decreased significantly among patients treated with either rhPro-UK 50 mg or 35 mg. The mean reduction in the NIHSS from baseline to 90 days after the onset was 3.56 and 5.79 in the rhPro-UK 50 mg group and the rhPro-UK 35 mg group, respectively. The rates of functional independence at 90 days of rhPro-UK 50 mg and 35 mg were 61.54% and 69.23%, respectively (P = 0.475), and the proportion of patients with functional response to treatment at 24 h were 28.21% and 33.33% (P = 0.624). No sICH occurred in the two groups, and death occurred in only one patient in the rhPro-UK 50 mg group. There was no significant difference in mortality at 90 days and the rate of other serious adverse events between two groups. CONCLUSION: In the 4.5-6 h time window, more than 60% of patients at either dose of rhPro-UK (50 mg or 35 mg) achieved functional independence at 90 days without increased mortality and sICH risk. Thus, intravenous rhPro-UK was effective and safe for patients with AIS within 4.5-6 h after stroke onset. While no significant differences were identified between different dosages of rhPro-UK regarding clinical outcomes, it is a logical step to further test the safety and efficacy of the low dose of rhPro-UK in a well-powered phase III study. TRIAL REGISTRATION: http://www.chictr.org.cn . Identifier: ChiCTR1800016519. Date of registration: 6 June 2018.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fibrinolíticos/efeitos adversos , AVC Isquêmico/tratamento farmacológico , Ativador de Plasminogênio Tecidual/efeitos adversos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Resultado do Tratamento , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações
5.
Environ Sci Technol ; 57(51): 21908-21916, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085070

RESUMO

Improving the adsorption selectivity, enhancing the extraction capacity, and ensuring the structural stability of the adsorbent are the key to realize the high efficiency recovery of uranium. In this work, we utilized the strong Lewis acid-base interaction between S2- and U(VI)O22+ coupling rapid electron transfer at the MnS/U(VI)O22+ solid-liquid interface to achieve excellent selectivity, high adsorption capacity, and rapid extraction of uranium. The as-synthesized MnS adsorbent exhibited an ultrahigh uranium extraction capacity (2457.05 mg g-1) and a rapid rate constant (K = 9.11 × 10-4 g h-1 mg-1) in seawater with 100.7 ppm of UO2(NO3)2 electrolyte. The kinetic simulation reveals that this adsorption process is a chemical adsorption process and conforms to a pseudo-second-order kinetic model, indicating electron transfer at the MnS/U(VI)O22+ solid-liquid interface. The relevant (quasi) in situ spectroscopic characterization and theoretical calculation results further revealed that the outstanding uranium extraction property of MnS could be attributed to the highly selective UO22+ adsorption of MnS with lower adsorption energy as a result of the strong interaction between S2- and UO22+ and the rapid mass transfer and interface electron transfer from S2- and low-valent Mn(II) to U(VI)O22+.


Assuntos
Urânio , Urânio/química , Elétrons , Transporte de Elétrons , Enxofre , Adsorção , Água do Mar
6.
Environ Sci Technol ; 57(35): 13258-13266, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616046

RESUMO

Electrochemically mediated Fe(II)/Fe(III) redox-coupled uranium extraction can efficiently reduce the cell voltage of electrochemical uranium extraction (EUE). How to regulate the surface structure to enhance the uranium acyl ion adsorption capacity and strengthen the Fe(II)/Fe(III) redox cycle process is crucial for EUE. In this work, we developed surface sulfated nanoreduced iron (S-NRI) for EUE and exhibited improved properties for EUE at an ultralow cell voltage (-0.1 V). Compared with a nanoreduced iron (NRI) adsorbent, S-NRI displayed faster electrochemical extraction kinetics properties and higher extraction efficiency and capacity for uranium. In a more complex seawater electrolyte containing uranyl ion concentration ranging from 1 to 20 ppm, the removal efficiency could reach almost ∼100% after EUE for 24 h. At a higher 50 ppm uranium acyl ion concentration in a seawater electrolyte, S-NRI exhibited higher extraction capacity (755.03 mg/g), which is better than 528.53 mg/g of NRI at a cell voltage of -0.1 V. Outstanding EUE property could be attributed to the fact that sulfate species (M-SO42-) on the S-NRI surface not only enhanced selective adsorption of uranyl ions but also strengthened the Fe(II)/Fe(III) redox cycle, which accelerated electron transfer between Fe(II) and U(VI), promoted the regeneration of Fe(II) active sites, and finally enhanced the EUE property.


Assuntos
Compostos Férricos , Urânio , Adsorção , Ferro , Sulfatos , Óxidos de Enxofre , Compostos Ferrosos
7.
Small ; 19(39): e2302216, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259266

RESUMO

Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.

8.
Angew Chem Int Ed Engl ; 62(21): e202217601, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905159

RESUMO

Nano-reduced iron (NRI) is a promising uranium adsorbent due to its strong reducibility and good selectivity, but it still faces the challenges of slow kinetics, limited and non-renewable active sites. In this work, we realized high efficiency uranium extraction under ultra-low cell voltage (-0.1 V) in seawater with 20 ppm UO2 (NO3 )2 solution by coupling electrochemical mediated FeII /FeIII redox and uranium extraction. The adsorption capacity and extraction efficiency of NRI after electrochemical uranium extraction (EUE) could reach 452 mg/g and 99.1 %, respectively. Combined with quasi-operando/operando characterization technologies, we clarified the mechanism of EUE and revealed that continuously regenerating FeII active sites by electroreduction could significantly enhance the property of EUE. This work here provides a new electrochemical mediated and low energy consumption uranium extraction strategy which also provides a reference for other metal resource recovery.

9.
J Chem Phys ; 157(21): 214115, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511552

RESUMO

The GW approximation is considered to be the simplest approximation within Hedin's formulation of many-body perturbation theory. It is expected that some of the deficiencies of the GW approximation can be overcome by adding the so-called vertex corrections. In this work, the recently implemented G0W0Γ0 (1) scheme, which incorporates the vertex effects by adding the full second-order self-energy correction to the GW self-energy, is applied to a set of first-row transition-metal monoxide (TMO) anions. Benchmark calculations show that results obtained by G0W0Γ0 (1) on top of the B3LYP hybrid functional starting point (SP) are in good agreement with experiment data, giving a mean absolute error of 0.13 eV for a testset comprising the ionization energies (IEs) of 27 outer valence molecular orbitals (MOs) from nine TMO anions. A systematic SP-dependence investigation by varying the ratio of the exact exchange (EXX) component in the PBE0-type SP reveals that, for G0W0Γ0 (1), the best accuracy is achieved with 20% EXX. Further error analysis in terms of the orbital symmetry characteristics (i.e., σ, π, or δ) in the testset indicates the best amount of EXX in the SP for G0W0Γ0 (1) calculations is independent of MO types, and this is in contrast with the situation in G0W0 calculations, where the best EXX ratio varies for different classes of MOs. Despite its success in describing the absolute IE values, we, however, found that G0W0Γ0 (1) faces difficulties in describing the energy separations between certain states of interest, worsening the already underestimated G0W0 predictions.

10.
Transl Stroke Res ; 13(6): 995-1004, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35505174

RESUMO

Recombinant human prourokinase (rhPro-UK) is a novel thrombolytic that has been approved to treat patients with acute myocardial infarction. However, the safety and efficacy of intravenous rhPro-UK in patients with acute ischemic stroke (AIS) has not been well established. We aimed to investigate the safety and preliminary efficacy of rhPro-UK in patients with AIS in a multi-center phase IIa trial setting. One hundred nineteen patients within 4.5 h of AIS onset were enrolled in this randomized, open-label, 23-center phase IIa clinical trial. Patients were randomly assigned to 35 mg (n = 40) or 50 mg (n = 39) intravenous rhPro-UK or 0.9 mg/kg recombinant tissue plasminogen activator (r-tPA; n = 40). The primary endpoint was functional independence defined as a modified Rankin scale (mRS) score of 0 or 1 at 90 days. The secondary outcome was early neurological improvement defined as a reduction of ≥ 4 points on the National Institutes of Health Stroke Scale (NIHSS) score from baseline to 24 h after drug administration. Safety endpoints included death due to any cause, symptomatic intracerebral hemorrhage (sICH), and other serious adverse events (SAEs). The proportion of patients with an mRS score of ≤ 1 at 90 days did not differ significantly among three groups (35 mg rhPro-UK: 55.56% vs. 50 mg rhPro-UK: 57.89% vs. vs. r-tPA: 52.63%; P = 0.92). The rates of treatment response, referring to early neurological improvement, were similar among these three groups (36.11% vs. 31.58% vs. 28.95%, respectively; P = 0.85). There was no difference in mortality at 90 days or in the rate of other SAEs among the three groups. One patient in the 50 mg rhPro-UK group suffered sICH. While neither the primary efficacy outcomes nor safety profile differed significantly among the low, high rhPro-UK and control groups, it is a logical step to further test the low-dose rhPro-UK group versus the control group in a well-powered phase III study.Trial Registration: http://www.chictr.org.cn . Identifier: ChiCTR1800016519. Date of registration: June 6 2018.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/efeitos adversos , Acidente Vascular Cerebral/complicações , Resultado do Tratamento , Fibrinolíticos/efeitos adversos , Hemorragia Cerebral/complicações , Isquemia Encefálica/complicações , Terapia Trombolítica/efeitos adversos
11.
Adv Mater ; 34(27): e2105320, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35472674

RESUMO

The nucleophile oxidation reaction (NOR) is of enormous significance for organic electrosynthesis and coupling for hydrogen generation. However, the nonuniform NOR mechanism limits its development. For the NOR, involving electrocatalysis and organic chemistry, both the electrochemical step and non-electrochemical process should be taken into account. The NOR of nickel-based hydroxides includes the electrogenerated dehydrogenation of the Ni2+ -OH bond and a spontaneous non-electrochemical process; the former determines the electrochemical activity, and the nucleophile oxidation pathway depends on the latter. Herein, the space-confinement-induced synthesis of Ni3 Fe layered double hydroxide intercalated with single-atom-layer Pt nanosheets (Ni3 Fe LDH-Pt NS) is reported. The synergy of interlayer Pt nanosheets and multiple defects activates Ni-OH bonds, thus exhibiting an excellent NOR performance. The spontaneous non-electrochemical steps of the NOR are revealed, such as proton-coupled electron transfer (PCET; Ni3+ -O + X-H = Ni2+ -OH + X• ), hydration, and rearrangement. Hence, the reaction pathway of the NOR is deciphered, which not only helps to perfect the NOR mechanism, but also provides inspiration for organic electrosynthesis.

12.
Angew Chem Int Ed Engl ; 60(42): 22908-22914, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405508

RESUMO

Nickel hydroxide (Ni(OH)2 ) is a promising electrocatalyst for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and the dehydronated intermediates Ni(OH)O species are proved to be active sites for HMFOR. In this study, Ni(OH)2 is modified by platinum to adjust the electronic structure and the current density of HMFOR improves 8.2 times at the Pt/Ni(OH)2 electrode compared with that on Ni(OH)2 electrode. Operando methods reveal that the introduction of Pt optimized the redox property of Ni(OH)2 and accelerate the formation of Ni(OH)O during the catalytic process. Theoretical studies demonstrate that the enhanced Ni(OH)O formation kinetics originates from the reduced dehydrogenation energy of Ni(OH)2 . The product analysis and transition state simulation prove that the Pt also reduces adsorption energy of HMF with optimized adsorption behavior as Pt can act as the adsorption site of HMF. Overall, this work here provides a strategy to design an efficient and universal nickel-based catalyst for HMF electro-oxidation, which can also be extended to other Ni-based catalysts such as Ni(HCO3 )2 and NiO.


Assuntos
Furaldeído/análogos & derivados , Hidróxidos/química , Níquel/química , Platina/química , Adsorção , Biomassa , Catálise , Furaldeído/química , Cinética , Nanopartículas Metálicas/química , Oxirredução , Análise Espectral Raman
13.
J Chem Theory Comput ; 17(8): 5140-5154, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319724

RESUMO

We present and benchmark a self-energy approach for quasiparticle energy calculations that goes beyond Hedin's GW approximation by adding the full second-order self-energy (FSOS-W) contribution. The FSOS-W diagram involves two screened Coulomb interaction (W) lines, and adding the FSOS-W to the GW self-energy can be interpreted as first-order vertex correction to GW (GWΓ(1)). Our FSOS-W implementation is based on the resolution-of-identity technique and exhibits better than O(N5) scaling with system size for small- to medium-sized molecules. We then present one-shot GWΓ(1) (G0W0Γ0(1)) benchmarks for the GW100 test set and a set of 24 acceptor molecules. For semilocal or hybrid density functional theory starting points, G0W0Γ0(1) systematically outperforms G0W0 for the first vertical ionization potentials and electron affinities of both test sets. Finally, we demonstrate that a static FSOS-W self-energy significantly underestimates the quasiparticle energies.

14.
J Phys Chem A ; 125(7): 1424-1435, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33591198

RESUMO

We study the structural and electronic properties of beryllium (Be) and magnesium (Mg) clusters for sizes 2-20 using a two-step approach. In the first step, a global search of the stable and low-lying metastable isomer structures is carried out on the basis of first-principles potential energy surfaces at the level of the generalized gradient approximation (GGA) of density functional theory (DFT). In the second step, vertical ionization potentials (VIPs) and energy gaps between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are determined using the G0W0 methods for up to the fourth-lowest-energy isomers. Novel globally lowest-energy isomer structures are identified for Be14, Mg14, and Mg16 clusters. The van der Waals interactions are found to have a stronger influence on Mg clusters than on Be clusters. A second-difference analysis for both the binding energies and HOMO-LUMO gaps reveals a close relationship between the structural stability and chemical hardness for both types of clusters.

15.
Angew Chem Int Ed Engl ; 60(13): 7297-7307, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33368979

RESUMO

The nitrogenous nucleophile electrooxidation reaction (NOR) plays a vital role in the degradation and transformation of available nitrogen. Focusing on the NOR mediated by the ß-Ni(OH)2 electrode, we decipher the transformation mechanism of the nitrogenous nucleophile. For the two-step NOR, proton-coupled electron transfer (PCET) is the bridge between electrocatalytic dehydrogenation from ß-Ni(OH)2 to ß-Ni(OH)O, and the spontaneous nucleophile dehydrogenative oxidation reaction. This theory can give a good explanation for hydrazine and primary amine oxidation reactions, but is insufficient for the urea oxidation reaction (UOR). Through operando tracing of bond rupture and formation processes during the UOR, as well as theoretical calculations, we propose a possible UOR mechanism whereby intramolecular coupling of the N-N bond, accompanied by PCET, hydration and rearrangement processes, results in high performance and ca. 100 % N2 selectivity. These discoveries clarify the evolution of nitrogenous molecules during the NOR, and they elucidate fundamental aspects of electrocatalysis involving nitrogen-containing species.

16.
Neurosci Lett ; 741: 135485, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33161108

RESUMO

BACKGROUND: Hyperactivation of complement C3 and inflammation-related activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome are implicated in the etiology of stress-related disorders. Studies have shown that human umbilical cord mesenchymal stromal cells (hUC-MSCs) have immunomodulatory and anti-inflammatory effects; however, the mechanism remains unclear. METHODS: hUC-MSCs were administered to chronic unpredictable mild stress (CUMS) model mice once a week for four weeks. After the administration of hUC-MSCs, several parameters were assessed, including behavioral performance, synapse-related proteins, complement C3 receptors (C3aR) in neurons, and the NLRP3 inflammasome. Then, CUMS mice were injected with SB290157, a complement C3aR antagonist, and the behavioral index and NLRP3 inflammasome activation were tested. RESULTS: The open-field and forced swimming behavioral tests showed an improvement in depression-like behaviors in the CUMS-exposed mice after the administration of hUC-MSCs. Treatment with hUC-MSCs significantly decreased the neuronal C3aR levels and alleviated synaptic damage. Furthermore, the levels of the NLRP3 inflammasome and inflammatory factors were reduced after hUC-MSC administration. In particular, treatment with a C3aR antagonist also decreased NLRP3 inflammasome expression and inflammation, which was consistent with the observed improvements after hUC-MSC treatment. CONCLUSION: hUC-MSCs can attenuate NLRP3 activation in CUMS-induced mice, which may be correlated with C3aR in neurons.


Assuntos
Complemento C3/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Psicológico/metabolismo , Animais , Anticorpos Monoclonais , Comportamento Animal , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamassomos/metabolismo , Interleucina-2 , Masculino , Camundongos Endogâmicos ICR , Plasticidade Neuronal , Cordão Umbilical/citologia
17.
J Am Chem Soc ; 142(28): 12087-12095, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538073

RESUMO

The exact role of a defect structure on transition metal compounds for electrocatalytic oxygen evolution reaction (OER), which is a very dynamic process, remains unclear. Studying the structure-activity relationship of defective electrocatalysts under operando conditions is crucial for understanding their intrinsic reaction mechanism and dynamic behavior of defect sites. Co3O4 with rich oxygen vacancy (VO) has been reported to efficiently catalyze OER. Herein, we constructed pure spinel Co3O4 and VO-rich Co3O4 as catalyst models to study the defect mechanism and investigate the dynamic behavior of defect sites during the electrocatalytic OER process by various operando characterizations. Operando electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) implied that the VO could facilitate the pre-oxidation of the low-valence Co (Co2+, part of which was induced by the VO to balance the charge) at a relatively lower applied potential. This observation confirmed that the VO could initialize the surface reconstruction of VO-Co3O4 prior to the occurrence of the OER process. The quasi-operando X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption fine structure (XAFS) results further demonstrated the oxygen vacancies were filled with OH• first for VO-Co3O4 and facilitated pre-oxidation of low-valence Co and promoted reconstruction/deprotonation of intermediate Co-OOH•. This work provides insight into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process. The current finding would motivate the community to focus more on the dynamic behavior of defect electrocatalysts.

18.
Nat Chem ; 12(8): 717-724, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541948

RESUMO

The use of nitrogen fertilizers has been estimated to have supported 27% of the world's population over the past century. Urea (CO(NH2)2) is conventionally synthesized through two consecutive industrial processes, N2 + H2 → NH3 followed by NH3 + CO2 → urea. Both reactions operate under harsh conditions and consume more than 2% of the world's energy. Urea synthesis consumes approximately 80% of the NH3 produced globally. Here we directly coupled N2 and CO2 in H2O to produce urea under ambient conditions. The process was carried out using an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets. This coupling reaction occurs through the formation of C-N bonds via the thermodynamically spontaneous reaction between *N=N* and CO. Products were identified and quantified using isotope labelling and the mechanism investigated using isotope-labelled operando synchrotron-radiation Fourier transform infrared spectroscopy. A high rate of urea formation of 3.36 mmol g-1 h-1 and corresponding Faradic efficiency of 8.92% were measured at -0.4 V versus reversible hydrogen electrode.

19.
Adv Mater ; 32(19): e1907879, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32176409

RESUMO

The commercialization of fuel cells, such as proton exchange membrane fuel cells and direct methanol/formic acid fuel cells, is hampered by their poor stability, high cost, fuel crossover, and the sluggish kinetics of platinum (Pt) and Pt-based electrocatalysts for both the cathodic oxygen reduction reaction (ORR) and the anodic hydrogen oxidation reaction (HOR) or small molecule oxidation reaction (SMOR). Thus far, the exploitation of active and stable electrocatalysts has been the most promising strategy to improve the performance of fuel cells. Accordingly, increasing attention is being devoted to modulating the surface/interface electronic structure of electrocatalysts and optimizing the adsorption energy of intermediate species by defect engineering to enhance their catalytic performance. Defect engineering is introduced in terms of defect definition, classification, characterization, construction, and understanding. Subsequently, the latest advances in defective electrocatalysts for ORR and HOR/SMOR in fuel cells are scientifically and systematically summarized. Furthermore, the structure-activity relationships between defect engineering and electrocatalytic ability are further illustrated by coupling experimental results and theoretical calculations. With a deeper understanding of these complex relationships, the integration of defective electrocatalysts into single fuel-cell systems is also discussed. Finally, the potential challenges and prospects of defective electrocatalysts are further proposed, covering controllable preparation, in situ characterization, and commercial applications.

20.
Adv Mater ; 32(7): e1905923, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31930593

RESUMO

The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...