Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612053

RESUMO

Diffusion plays a vital role during the fabrication of many materials. It is a well-known fact that stress can influence diffusion behavior. In order to optimize material processing techniques, a quantitative evaluation of the effect of stress on diffusion is essentially required. By analyzing the free energy change in a Ti-O system during diffusion, a phase-field model was developed to address this issue. Using this model, the diffusion of oxygen atoms in pure titanium under different stress states was investigated. It was observed that the true equilibrium concentration of oxygen was proportional to its hydrostatic pressure. Tensile stress can increase the oxygen concentration. This raise in concentration decreased with temperature. However, the promotion of diffusion can be attained in deeper regions at a higher temperature. On the contrary, compressive stress inhibited the diffusion of oxygen in pure titanium. Under a certain compressive stress, the decrease in the oxygen concentration at the surface layer was more significant at a lower temperature, while a decrease could be observed at a deeper distance from the surface at a higher temperature. A thermodynamic explanation of the effect of stress on diffusion was given based on the proposed phase-field model.

2.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407917

RESUMO

To improve the shape memory effect, the solutionized Fe-24Mn-6Si-9Cr-6Ni alloy was shot peened and subsequently annealed. The phase constituent was examined using the X-ray diffraction method. Microstructure evolution was characterized using an optical microscope and the electronic backscatter diffraction method, and the shape memory effect was evaluated using a bending test. The results show that α'-martensite and ε-martensite were introduced into the shot-peened surface layer. The α'-martensite remained after annealing even at 850 °C. Microstructure of the surface layer was refined through shot peening and subsequent annealing. Compared with those of the solutionized specimen, the shape recovery ratio and recovery strain of the specimens that are shot peened and subsequently annealed are significantly improved at different prestrains.

3.
Materials (Basel) ; 13(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138243

RESUMO

The nanoindentation loading response of elastoplastic materials was simulated by the finite element method (FEM). The influence of the Young's modulus E, yield stress σy, strain hardening exponent n and Poisson's ratio ν on the loading response was investigated. Based on an equivalent model, an equation with physical meaning was proposed to quantitatively describe the influence. The calculations agree well with the FEM simulations and experimental results in literature. Comparisons with the predictions using equations in the literature also show the reliability of the proposed equation. The investigations show that the loading curvature C increases with increasing E, σy, n and ν. The increase rates of C with E, σy, n and ν are different for their different influences on the flow stress after yielding. It is also found that the influence of one of the four mechanical parameters on C can be affected by the other mechanical parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...