Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38874450

RESUMO

Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.

2.
Pest Manag Sci ; 79(10): 3808-3818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209281

RESUMO

BACKGROUND: Some traditional pesticide formulations are inefficient, leading to excessive use and abuse of pesticides, which in turn effects environment. Intelligent release pesticide formulations are ideal for improving pesticide utilization and persistence while reducing environmental pollution. RESULTS: We designed a benzil-modified chitosan oligosaccharide (CO-BZ) to encapsulate avermectin (Ave). Ave@CO-BZ nanocapsules are prepared based on a simple interfacial method via cross-linking of CO-BZ with diphenylmethane diisocyanate (MDI). The Ave@CO-BZ nanocapsules have an average particle size of 100 nm and exhibited a responsive release performance for ROS. The cumulative release rate of nanocapsules at 24 h with ROS increased by about 11.4% compared to that without ROS. The Ave@CO-BZ nanocapsules displayed good photostability. Ave@CO-BZ nanocapsules can penetrate root-knot nematodes more easily and exhibited better nematicidal activity against root-knot nematodes. The pot experiment showed that the control effect of Ave CS at low concentration was 53.31% at the initial stage of application (15 d), while Ave@CO-BZ nanocapsules was 63.54%. Under the same conditions, the control effect of Ave@CO-BZ nanocapsules on root-knot nematodes was 60.00% after 45 days of application, while Ave EC was only 13.33%. The acute toxicity experiments of earthworms showed that the toxicity of nanocapsules was significantly lower than that of EC. CONCLUSION: The ROS-responsive nanocapsules can improve the utilization of pesticides and non-target biosafety. This modified chitosan oligosaccharide has great potential as a bio stimuli-responsive material, and this simple and convenient method for preparing Ave@CO-BZ nanocapsules provides a direction for the effective utilization of pesticides. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Nanocápsulas , Praguicidas , Praguicidas/toxicidade , Espécies Reativas de Oxigênio , Oligossacarídeos
3.
Int J Biol Macromol ; 241: 124561, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094645

RESUMO

Developing an efficient drug delivery system to mitigate the harm caused by root-knot nematodes is crucial. In this study, enzyme-responsive release abamectin nanocapsules (AVB1a NCs) were prepared using 4, 4-diphenylmethane diisocyanate (MDI) and sodium carboxymethyl cellulose as response release factors. The results showed that the average size (D50) of the AVB1a NCs was 352 nm, and the encapsulation efficiency was 92 %. The median lethal concentration (LC50) of AVB1a NCs for Meloidogyne incognita activity was 0.82 mg L-1. Moreover, AVB1a NCs improved the permeability of AVB1a to root-knot nematodes and plant roots and the horizontal and vertical soil mobility. Furthermore, AVB1a NCs greatly reduced the adsorption of AVB1a by the soil compared to AVB1a emulsifiable concentrate (EC), and the effect of the AVB1a NCs on controlling root-knot nematode disease was increased by 36 %. Compared to the AVB1a EC, the pesticide delivery system significantly reduced the acute toxicity to the soil biological earthworms by approximately 16 times that of the AVB1a and had a lower overall impact on the soil microbial communities. This enzyme-responsive pesticide delivery system had a simple preparation method, excellent performance, and high level of safety, and thus has great application potential for plant diseases and insect pests control.


Assuntos
Nanocápsulas , Praguicidas , Solanum lycopersicum , Tylenchoidea , Animais , Carboximetilcelulose Sódica/farmacologia , Praguicidas/farmacologia , Solo , Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...