Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704890

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferase , Metiltransferases , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Pharmacol ; 223: 116198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588830

RESUMO

Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Camundongos Nus , Proteína 11 Semelhante a Bcl-2/metabolismo
3.
Life Sci ; 332: 122129, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769804

RESUMO

Ecto-5'-nucleotidase (CD73), encoded by the NT5E gene, mediates tumor immunosuppression and has been targeted for the development of new anticancer drugs. Proteasome inhibitors impair protein degradation by inhibiting proteasome and have been used in the clinic for cancer therapy. Here we report that proteasome inhibitors reduce the protein and mRNA levels of CD73. Among 127 tested small-molecule drugs, proteasome inhibitors were found to consistently decrease the protein and mRNA levels of CD73 in NSCLC NCI-H1299 cells. This effect was further confirmed in different NSCLC cells exposed to different proteasome inhibitors. In those treated cells, the protein levels of ERK and its active form p-ERK, the vital components in the MAPK pathway, were reduced. Consistently, inhibitors of MEK and ERK, another two members of the MAPK pathway, also lowered the protein and mRNA levels of CD73. Correspondingly, treatments with fibroblast growth factor 2 (FGF2), an activator of the MAPK pathway, enhanced the levels of p-ERK and partly rescued the proteasome inhibitor-driven reduction of CD73 mRNA and protein in NSCLC cells. However, exogenous CD73 overexpression in murine Lewis lung carcinoma (LLC) cells was not lowered either in vitro or in vivo, by the treatments with proteasome inhibitors and basically, did not affect their in vitro proliferative inhibition either. In contrast, CD73 overexpression dramatically reduced the in vivo anticancer activity of Bortezomib in immunocompetent mice, with tumor growth inhibition rates from 52.18 % for LLC/vector down to 8.75 % for LLC/NT5E homografts. These findings give new insights into the anticancer mechanisms of proteasome inhibitors.

4.
Mol Cancer Res ; 20(12): 1785-1798, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001806

RESUMO

Inhibitors targeting bromodomain and extraterminal (BET) proteins are promising anticancer drugs. The emergence of drug resistance during treatments will impair their therapeutic effectiveness. To investigate the mechanisms of acquired resistance to BET inhibitors (BETi), we generated a series of drug-resistant sublines by exposing non-small cell lung cancer (NSCLC) NCI-H1975 cells to the BETi ABBV-075. These sublines displayed cross-resistance to other tested BETis, increased migration abilities, reduced growth rates accompanied by an increased proportion of cells in G1 phase and decreased apoptotic responses to BETis. Changes in RNA expression and gene mutation profiles in the resistant variants indicate that emergence of BETi resistance is multifactorial. Importantly, all the tested ABBV-075-resistant variants showed loss of vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) and an increase in the antiapoptotic BCL-2 protein. By knockdown, knockout, and reconstitution of VOPP1 in resistant cells, their parental cells, and other NSCLC cells, we confirmed that the loss of VOPP1 contributed to BETi resistance. Moreover, knockout of VOPP1 in the parental cells caused the increased expression of BCL-2, and the latter directly mediated BETi resistance. Through combined treatments with BETis and BCL-2 inhibitors (BCL-2i), we demonstrated that BCL-2is synergistically sensitized resistant cells to BETis. IMPLICATIONS: Based on these results, for the first time, we establish a causal link from VOPP1 loss to BCL-2 gain and then to BETi resistance, which provides new insights into BETi resistance and paves the way for further testing to circumvent BETi resistance.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/genética
5.
Am J Cancer Res ; 12(3): 1069-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411247

RESUMO

Colorectal cancer (CRC) is an aggressive malignancy with limited options for treatment. Targeting the bromodomain and extra terminal domain (BET) proteins by using BET inhibitors (BETis) could effectively interrupt the interaction with acetylated histones, inhibit genes transcription and have shown a certain effect on CRC inhibition. To improve the efficacy, the inhibitors of Tankyrases, which cause accumulation of AXIN through dePARsylation, in turn facilitate the degradation of ß-Catenin and suppress the growth of adenomatous polyposis coli (APC)-mutated CRCs, were tested together with BETi as a combination treatment. We examined the effects of BETi and Tankyrases inhibitor (TNKSi) together on the proliferation, cell cycle and apoptosis of human CRCs cell lines with APC or CTNNB1 mutation, and elucidated the underlying molecular mechanisms affected by the double treatment. The result showed that the TNKSi could sensitize all tested CRC cell lines to BETi, and the synergistic effect was not only seen in cell proliferation inhibition, but also confirmed in decreased colony-forming ability and weaken EdU incorporation compared with monotherapy. Combined treatment resulted in enhanced G1 cell cycle arrest and increased apoptosis. In addition, we found ß-Catenin was potentially inhibited by the combination and revealed that both BETi-induced transcriptional inhibition and TNKSi-mediated protein degradation all reduced the ß-Catenin accumulation. In all, the synergistic effects suggest that combination of BETi and TNKSi could provide novel treatment opportunities for CRC, but both TNKSi and combination strategy need to be optimized.

6.
Biochem Pharmacol ; 185: 114435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539817

RESUMO

Bromodomain and extra-terminal domain (BET) family proteins are promising anticancer targets. Most BET inhibitors in clinical trials are monovalent. They competitively bind to one of the bromodomains (BD1 and BD2) in BET proteins and exhibit relatively weak anticancer activity, poor pharmacokinetics, and low metabolic stability. Here, we evaluated the anticancer activity of a novel bivalent BET inhibitor, N2817, which consists of two molecules of the monovalent BET inhibitor 8124-053 connected by a common piperazine ring, rendering a long linker unnecessary. Compared with ABBV-075, one of the potent monovalent BET inhibitors reported to date, N2817 showed greater potency in inhibiting proliferation, arresting cell-cycle, inducing apoptosis, and suppressing the growth of tumor xenografts. Moreover, N2817 showed high metabolic stability, a relatively long half-life, and no brain penetration after oral administration. Additionally, N2817 directly bound and inhibited another BD-containing protein, TAF1 (BD2), as evidenced by a reduction in mRNA and protein levels. TAF1 inhibition contributed to the anticancer effect of N2817. Therefore, this study offers a new paradigm for designing bivalent BET inhibitors and introduces a novel potent bivalent BET inhibitor and a new anticancer mechanism.


Assuntos
Antineoplásicos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/antagonistas & inibidores , Fator de Transcrição TFIID/metabolismo , Células A549 , Animais , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Stem Cell Res ; 51: 102175, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33485186

RESUMO

PARK7 mutations are accountable for the inherited Parkinson's disease. An induced pluripotent stem cell (iPSC) line FJMUUHi001-A was generated by expressing five reprogramming factors, OCT3/4, SOX2, c-MYC, KLF4 and BCL-XL, in peripheral blood mononuclear cells from a 32-year old patient carrying a homozygous mutation of c.189dupA in PARK7. The iPSCs with a normal karyotype had the abilities to differentiate into three germ layers and expressed pluripotency markers without detectable residual plasmids. The cell line FJMUUHi001-A carrying the truncating protein PARK7 could be a useful tool to help comprehend the function of PARK7 in the iPSCs and differentiated cells from them.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Adulto , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Humanos , Fator 4 Semelhante a Kruppel , Leucócitos Mononucleares , Mutação/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1
8.
Cell Death Dis ; 11(1): 71, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992690

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) regulates gene transcription in addition to functioning as a DNA repair factor. Forkhead box O1 (FoxO1) is a transcription factor involved in extensive biological processes. Here, we report that PARP1 binds to two separate motifs on the FoxO1 promoter and represses its transcription in a polymerase-independent manner. Using PARP1-knock out (KO) cells, wild-type-PARP1-complemented cells and catalytic mutant PARP1E988K-reconstituted cells, we investigated transcriptional regulation by PARP1. PARP1 loss led to reduced DNA damage response and ~362-fold resistance to five PARP inhibitors (PARPis) in Ewing sarcoma cells. RNA sequencing showed 492 differentially expressed genes in a PARP1-KO subline, in which the FoxO1 mRNA levels increased up to more than five times. The change in the FoxO1 expression was confirmed at both mRNA and protein levels in different PARP1-KO and complemented cells. Moreover, exogenous PARP1 overexpression reduced the endogenous FoxO1 protein in RD-ES cells. Competitive EMSA and ChIP assays revealed that PARP1 specifically bound to the FoxO1 promoter. DNase I footprinting, mutation analyses, and DNA pulldown FREP assays showed that PARP1 bound to two particular nucleotide sequences separately located at -813 to -826 bp and -1805 to -1828 bp regions on the FoxO1 promoter. Either the PARPi olaparib or the PARP1 catalytic mutation (E988K) did not impair the repression of PARP1 on the FoxO1 expression. Exogenous FoxO1 overexpression did not impair cellular PARPi sensitivity. These findings demonstrate a new PARP1-gene promoter binding mode and a new transcriptional FoxO1 gene repressor.


Assuntos
Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sarcoma de Ewing/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dano ao DNA/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Técnicas de Inativação de Genes , Humanos , Mutação , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Sarcoma de Ewing/genética , Regulação para Cima
9.
Invest New Drugs ; 38(3): 700-713, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31267379

RESUMO

The bromodomain and extra-terminal domain (BET) family of proteins, especially bromodomain-containing protein 4 (BRD4), has emerged as exciting anti-tumor targets due to their important roles in epigenetic regulation. Therefore, the discovery of BET inhibitors with promising anti-tumor efficacy will provide a novel approach to epigenetic anticancer therapy. Recently, we discovered the new BET inhibitor compound 171, which is derived from a polo-like kinase 1 (PLK1)-BRD4 dual inhibitor based on our previous research. Compound 171 was found to maintain BET inhibition ability without PLK1 inhibition, and there was no selectivity among BET family members. The in vitro and in vivo results both indicated that the overall anti-tumor activity of compound 171 was improved compared with the (+)-JQ-1 or OTX-015 BET inhibitors. Furthermore, we found that compound 171 could regulate the expression of cell cycle-regulating proteins including c-Myc and p21 and induce cell cycle arrest in the G0/G1 phase. However, compound 171 only has a quite limited effect on apoptosis, in considering that apoptosis was only observed at doses greater than 50 µM. To determine the mechanisms underlying cell death, proliferation activity assay was conducted. The results showed that compound 171 induced clear anti-proliferative effects at doses that no obvious apoptosis was induced, which indicated that the cell cycle arresting effect contributed mostly to its anti-tumor activity. The result of this study revealed the anti-tumor mechanism of compound 171, and laid a foundation for the combination therapy in clinical practice, if compound 171 or its series compounds become drug candidates in the future.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Células A549 , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Med Chem ; 62(18): 8642-8663, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31490070

RESUMO

BRD4 has recently emerged as a promising drug target. Therefore, identifying novel inhibitors with distinct properties could enrich their use in anticancer treatment. Guided by the cocrystal structure of hit compound 4 harboring a five-membered-ring linker motif, we quickly identified lead compound 7, which exhibited good antitumor effects in an MM.1S xenograft model by oral administration. Encouraged by its high potency and interesting scaffold, we performed further lead optimization to generate a novel potent series of bromodomain and extra-terminal (BET) inhibitors with a (1,2,4-triazol-5-yl)-3,4-dihydroquinoxalin-2(1H)-one structure. Among them, compound 19 was found to have the best balance of activity, stability, and antitumor efficacy. After confirming its low brain penetration, we conducted comprehensive preclinical studies, including a multiple-species pharmacokinetics profile, extensive cellular mechanism studies, hERG assay, and in vivo antitumor growth effect testing, and we found that compound 19 is a potential BET protein drug candidate for the treatment of cancer.


Assuntos
Desenho de Fármacos , Peptídeos/química , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Domínios Proteicos , Fatores de Transcrição/antagonistas & inibidores
11.
Cell Death Dis ; 10(8): 557, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324754

RESUMO

The bromodomain and extra terminal domain (BET) family members, including BRD2, BRD3, and BRD4, act as epigenetic readers to regulate gene expression. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that participates in tumor immune escape primarily by catalyzing tryptophan to L-kynurenine. Here, we report that IDO1 is a new target gene of the BET family. RNA profiling showed that compound 9, a new BET inhibitor, reduced IDO1 mRNA up to seven times in Ty-82 cells. IDO1 differentially expressed in tumor cells and its expression could be induced with interferon gamma (IFN-γ). BET inhibitors (ABBV-075, JQ1, and OTX015) inhibited both constitutive and IFN-γ-inducible expression of IDO1. Similarly, reduction of BRD2, BRD3, or BRD4 decreased IDO1 expression. All these BET family members bound to the IDO1 promoter via the acetylated histone H3. JQ1 led to their release and reduced enrichment of RNA polymerase II (Pol II) on the promoter. IFN-γ increased the binding of BRD2, BRD3, BRD4, and Pol II on the IDO1 promoter by increasing the acetylation of histone H3, which could be prevented by JQ1 partially or even completely. Furthermore, both JQ1 and OTX015 decreased the production of L-kynurenine. The combination of BET inhibitors with the IDO1 inhibitor further reduced L-kynurenine, though only marginally. Importantly, the BET inhibitor ABBV-075 significantly inhibited the growth of human Ty-82 xenografts in nude mice and reduced both protein and mRNA levels of IDO1 in the xenografts. This finding lays a basis for the potential combination of BET inhibitors and IDO1 inhibitors for the treatment of IDO1-expressing cancers.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/biossíntese , Fatores de Transcrição/antagonistas & inibidores , Células A549 , Acetilação , Animais , Proteínas de Ciclo Celular/genética , Feminino , Células HL-60 , Células HeLa , Histonas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Piridonas/farmacologia , RNA Mensageiro/genética , Sulfonamidas/farmacologia , Fatores de Transcrição/genética , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Pharmacol ; 154: 255-264, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753750

RESUMO

Tanshinone I (Tanshinone-1), a major active principle of the traditional Chinese medicine Salvia miltiorrhiza, possesses excellent anticancer properties, including inhibiting proliferation, angiogenesis and metastasis and overcoming multidrug resistance (MDR). However, its direct anticancer molecular target(s) remain unknown. Here we report that tanshinone-1 and its two new derivatives, S222 and S439, directly inhibit DNA topoisomerase I/II (Top1/2). With significantly improved water solubility, S222 and S439 displayed 12- and 14-times more potent proliferative inhibition than their parent tanshinone-1 in a panel of 15 cancer cell lines. Both retained tanshinone-1's anti-MDR and anti-angiogenesis properties and its capability to reduce the phosphorylation of Stat3 at Tyr705 with apparently enhanced efficacy and in these regards, S439 was also slightly more potent than S222. Both derivatives and tanshinone-1 directly inhibited Top1 and Top2 at molecular and cellular levels; the derivatives displayed similar potency but both were more potent than tanshinone-1. The inhibition of S222 and S439 on Top1 and Top2 was also more potent than that of the Top1 inhibitor hydroxylcamptothecin and the Top2 inhibitor etoposide, respectively. Consistently, tanshinone-1 and its derivatives induced DNA double-strand breaks, G2/M arrest and apoptosis. Unexpectedly, the derivatives demonstrated different p53-dependency in inducing both cell cycle arrest and apoptosis. S222 showed no obvious p53-dependency. In contrast, S439 induced more G2/M arrest in p53-proficient cells than in p53-deficient cells while its apoptotic induction was the opposite. However, their proliferative inhibition was independent of the p53 status. Due to their structures different from the known Top1, Top2 and dual Top1/2 inhibitors, our results indicate that tanshinone-1 and its derivatives are a new type of dual Top1/2 inhibitors.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia , Células A549 , Abietanos/química , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Genes p53/fisiologia , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase II/química
13.
Cancer Lett ; 416: 57-65, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248713

RESUMO

The microtubulin inhibitor MT189 possesses anticancer activity and has been shown to overcome multidrug resistance. Here, we report that MT189 also inhibits angiogenesis. MT189 inhibited the proliferation, migration and differentiation of endothelial cells, with or without VEGF stimulation, and suppressed microvessel formation ex vivo and in vivo. MT189 reduced VEGF expression and secretion in both tumor and endothelial cells, under either hypoxic or normoxic conditions. The activation of VEGFR2 and downstream Src was thus abrogated in the MT189-treated endothelial cells. MT189 subsequently stabilized endothelial cell-cell junctions consist of VE-cadherin, ß-catenin, vinculin, and actin. MT189 also disrupted endothelial cell-matrix junctions by inhibiting the turnover of focal adhesions containing FAK, paxillin, vinculin, and actin. Inhibition of JNK reversed MT189-mediated inhibition of endothelial migration and differentiation, JNK activation, the reduction of VEGF expression and secretion, and the decrease of Src and FAK phosphorylation. These results indicate that MT189 suppresses angiogenesis by reducing endothelial proliferation, migration, and differentiation via the JNK-VEGF/VEGFR2 signaling axis. Together with our previous report showing that MT189 exhibited anticancer activity via the JNK-MCL-1 pathway, these new findings further support MT189-based drug development for cancer therapy.


Assuntos
Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microvasos/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Células HeLa , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Microvasos/metabolismo , Microvasos/fisiologia , Ratos , Moduladores de Tubulina/farmacologia
14.
Acta Pharmacol Sin ; 38(11): 1521-1532, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770827

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially in breast and ovarian cancers; tumor cells that are deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, we identified a series of 2,4-difluorophenyl-linker analogs (15-55) derived from olaparib as novel PARP1 inhibitors. Four potent analogs 17, 43, 47, and 50 (IC50=2.2-4.4 nmol/L) effectively inhibited the proliferation of Chinese hamster lung fibroblast V-C8 cells (IC50=3.2-37.6 nmol/L) in vitro, and showed specificity toward BRCA-deficient cells (SI=40-510). The corresponding hydrochloride salts 56 and 57 (based on 43 and 47) were highly water soluble in pH=1.0 buffered salt solutions (1628.2 µg/mL, 2652.5 µg/mL). In a BRCA1-mutated xenograft model, oral administration of compound 56 (30 mg·kg-1·d-1, for 21 d) exhibited more prominent tumor growth inhibition (96.6%) compared with the same dose of olaparib (56.3%); in a BRCA2-mutated xenograft model, oral administration of analog 43 (10 mg·kg-1·d-1, for 28 d) significantly inhibited tumor growth (69.0%) and had no negative effects on the body weights. Additionally, compound 56 exhibited good oral bioavailability (F=32.2%), similar to that of olaparib (F=45.4%). Furthermore, the free base 43 of the hydrochloride salt 56 exhibited minimal hERG inhibition activity (IC50=6.64 µmol/L). Collectively, these data demonstrate that compound 56 may be an excellent drug candidate for the treatment of cancer, particularly BRCA-deficient tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas/métodos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Água/química , Administração Oral , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Disponibilidade Biológica , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Injeções Intravenosas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Ftalazinas/química , Piperazinas/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Ratos Sprague-Dawley , Solubilidade , Relação Estrutura-Atividade , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 8(3): 4156-4168, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27926532

RESUMO

The approval of poly(ADP-ribose) polymerase (PARP) inhibitor AZD2281 in 2014 marked the successful establishment of the therapeutic strategy targeting homologous recombination repair defects of cancers in the clinic. However, AZD2281 has poor water solubility, low tissue distribution and relatively weak in vivo anticancer activity, which appears to become limiting factors for its clinical use. In this study, we found that mefuparib hydrochloride (MPH) was a potent PARP inhibitor, possessing prominent in vitro and in vivo anticancer activity. Notably, MPH displayed high water solubility (> 35 mg/ml) and potent PARP1/2 inhibition in a substrate-competitive manner. It reduced poly(ADP-ribose) (PAR) formation, enhanced γH2AX levels, induced G2/M arrest and subsequent apoptosis in homologous recombination repair (HR)-deficient cells. Proof-of-concept studies confirmed the MPH-caused synthetic lethality. MPH showed potent in vitro and in vivo proliferation and growth inhibition against HR-deficient cancer cells and synergistic sensitization of HR-proficient xenografts to the anticancer drug temozolomide. A good relationship between the anticancer activity and the PARP inhibition of MPH suggested that PAR formation and γH2AX accumulation could serve as its pharmacodynamic biomarkers. Its high bioavailability (40%~100%) and high tissue distribution in both monkeys and rats were its most important pharmacokinetic features. Its average concentrations were 33-fold higher in the tissues than in the plasma in rats. Our work supports the further clinical development of MPH as a novel PARP1/2 inhibitor for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Sinergismo Farmacológico , Haplorrinos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Humanos , Camundongos , Neoplasias/enzimologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Ratos , Temozolomida , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 386: 47-56, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847302

RESUMO

Poly(ADP-ribose)polymerase (PARP)1/2 inhibitors have been proved to be clinically effective anticancer drugs. Here we report a new PARP1/2 inhibitor, simmiparib, displaying apparently improved preclinical anticancer activities relative to the first approved inhibitor olaparib. Simmiparib inhibited PARP1/2 approximately 2-fold more potently than olaparib, with more than 90-fold selectivity over the other tested PARP family members. Simmiparib and olaparib caused similar cellular PARP1-DNA trapping. Simmiparib selectively induced the accumulation of DNA double-strand breaks, G2/M arrest and apoptosis in homologous recombination repair (HR)-deficient cells. Consistently, simmiparib showed 26- to 235-fold selectivity in its antiproliferative activity against HR-deficient cells over the corresponding isogenic HR-proficient cells. Notably, its antiproliferative activity was 43.8-fold more potent than that of olaparib in 11 HR-deficient cancer cell lines. Simmiparib also potentiated the proliferative inhibition of several conventional anticancer drugs. Simmiparib reduced the poly(ADP-ribose) formation in HR-deficient cancer cells and xenografts. When orally administered to nude mice bearing xenografts, simmiparib revealed excellent pharmacokinetic properties. Simmiparib caused approximately 10-fold greater growth inhibition than olaparib against HR-deficient human cancer cell- or tissue-derived xenografts in nude mice. Collectively, these findings support the undergoing clinical trials of simmiparib.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Cricetinae , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Genes BRCA1 , Genes BRCA2 , Humanos , Camundongos Nus , Ftalazinas/administração & dosagem , Ftalazinas/farmacocinética , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Med Chem ; 59(21): 9575-9598, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27416328

RESUMO

Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
18.
Mol Cancer Ther ; 15(7): 1495-503, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27197304

RESUMO

Multidrug resistance (MDR) is a major cause of tumor treatment failure; therefore, drugs that can avoid this outcome are urgently needed. We studied triptolide, which directly kills MDR tumor cells with a high potency and a broad spectrum of cell death. Triptolide did not inhibit P-glycoprotein (P-gp) drug efflux and reduced P-gp and MDR1 mRNA resulting from transcription inhibition. Transcription factors including c-MYC, SOX-2, OCT-4, and NANOG were not correlated with triptolide-induced cell killing, but RPB1, the largest subunit of RNA polymerase II, was critical in mediating triptolide's inhibition of MDR cells. Triptolide elicited antitumor and anti-MDR activity through a universal mechanism: by activating CDK7 by phosphorylating Thr170 in both parental and MDR cell lines and in SK-OV-3 cells. The CDK7-selective inhibitor BS-181 partially rescued cell killing induced by 72-hour treatment of triptolide, which may be due to partial rescue of RPB1 degradation. We suggest that a precise phosphorylation site on RPB1 (Ser1878) was phosphorylated by CDK7 in response to triptolide. In addition, XPB and p44, two transcription factor TFIIH subunits, did not contribute to triptolide-driven RPB1 degradation and cell killing, although XPB was reported to covalently bind to triptolide. Several clinical trials are underway to test triptolide and its analogues for treating cancer and other diseases, so our data may help expand potential clinical uses of triptolide, as well as offer a compound that overcomes tumor MDR. Future investigations into the primary molecular target(s) of triptolide responsible for RPB1 degradation may suggest novel anti-MDR target(s) for therapeutic development. Mol Cancer Ther; 15(7); 1495-503. ©2016 AACR.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Quinases Ciclina-Dependentes/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diterpenos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Fenantrenos/farmacologia , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Epóxi/farmacologia , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Quinase Ativadora de Quinase Dependente de Ciclina
19.
Purinergic Signal ; 12(1): 89-101, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608888

RESUMO

Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Hipóxia Encefálica/imunologia , Receptor A1 de Adenosina/imunologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Infarto Cerebral/patologia , Feminino , Hipóxia Encefálica/congênito , Interleucina-10/biossíntese , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Equilíbrio Postural , Gravidez , Receptor A1 de Adenosina/efeitos dos fármacos
20.
Oncotarget ; 6(18): 16031-42, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26202747

RESUMO

Tanshinone I (Tanshinone-1), a major active principle of Salvia miltiorrhiza (Danshen), has been shown to overcome tumor drug resistance and metastasis. Here we report that tanshinone-1 inhibits angiogenesis. Tanshinone-1 inhibited proliferation, migration and tube formation of vascular endothelial cells, rat aortic ring sprouting and the neovascularization of the chick chorioallantoic membrane in a concentration-dependent manner. In endothelial cells, tanshinone-1 almost completely inhibited phosphorylation of Stat3 at Tyr705 regardless of hypoxia or normoxia but only slightly decreased the hypoxia-induced HIF-1α accumulation. In tumor cells, contrastively, tanshinone-1 could not only make phosphorylation of Stat3 at Tyr705 disappear but also reduce the hypoxia-induced accumulation of HIF-1α to its baseline levels at normoxia. Consequently, VEGF secretion from tumor cells was reduced, which could potentiate the direct inhibition of tanshinone-1 on endothelial cells. Together with its overcoming tumor drug resistance and metastasis, our results reveal unique characteristics of tanshinone-1 and its improved derivatives as promising angiogenesis inhibitors.


Assuntos
Abietanos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/prevenção & controle , Neovascularização Patológica/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Aorta/metabolismo , Aorta/patologia , Apoptose , Western Blotting , Movimento Celular , Proliferação de Células , Galinhas , Membrana Corioalantoide/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...