Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 138, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300702

RESUMO

Unintended pregnancy is a global issue with serious ramifications for women, their families, and society, including abortion, infertility, and maternal death. Although existing contraceptive strategies have been widely used in people's lives, there have not been satisfactory feedbacks due to low contraceptive efficacy and related side effects (e.g., decreased sexuality, menstrual cycle disorder, and even lifelong infertility). In recent years, biomaterials-based long-acting reversible contraception has received increasing attention from the viewpoint of fundamental research and practical applications mainly owing to improved delivery routes and controlled drug delivery. This review summarizes recent progress in advanced biomaterials for long-acting reversible contraception via various delivery routes, including subcutaneous implant, transdermal patch, oral administration, vaginal ring, intrauterine device, fallopian tube occlusion, vas deferens contraception, and Intravenous administration. In addition, biomaterials, especially nanomaterials, still need to be improved and prospects for the future in contraception are mentioned.


Assuntos
Anticoncepcionais Femininos , Dispositivos Intrauterinos , Contracepção Reversível de Longo Prazo , Materiais Biocompatíveis , Anticoncepção , Anticoncepcionais Femininos/uso terapêutico , Feminino , Humanos , Gravidez
2.
Front Bioeng Biotechnol ; 9: 758121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805116

RESUMO

The coronavirus disease-2019 (COVID-19) pandemics caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading around the world due to its high infection rate, long incubation period, as well as lack of effective diagnosis and therapy or vaccines, which is tearing global health systems apart. It is an urgent demand for point-of-care diagnosis and effective treatment to prevent the spread of COVID-19. Currently, based on the rapid development of functional materials with unique physicochemical features through advanced fabrication and chemical modification, nanomaterials provide an emerging tool to detect SARS-CoV-2, inhibit the interplay in the virus and host cell interface, and enhance host immune response. In our manuscript, we summarized recent advances of nanomaterials for the diagnosis and therapy of COVID-19. The limitation, current challenges, and perspectives for the nano-diagnosis and nano-therapy of COVID-19 are proposed. The review is expected to enable researchers to understand the effect of nanomaterials for the diagnosis and therapy of COVID-19 and may catalyze breakthroughs in this area.

3.
J Nanobiotechnology ; 19(1): 353, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717648

RESUMO

Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.


Assuntos
Antibacterianos/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Titânio/química , Óxido de Zinco/química , Corrosão , Lasers , Nanopartículas , Nanoestruturas , Nanotubos , Propriedades de Superfície
4.
Front Bioeng Biotechnol ; 9: 752019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557480

RESUMO

Extracellular vesicles are cellular secretory particles that can be used as natural drug delivery carriers. They have successfully delivered drugs including chemotherapeutics, proteins, and genes to treat various diseases. Oxidative stress is an abnormal physiological phenomenon, and it is associated with nearly all diseases. In this short review, we summarize the regulation of EVs on oxidative stress. There are direct effects and indirect effects on the regulation of oxidative stress through EVs. On the one hand, they can deliver antioxidant substances or oxides to recipient cells, directly relieving or aggravating oxidative stress. On the other hand, regulate factors of oxidative stress-related signaling pathways can be delivered to recipient cells by the mediation of EVs, realizing the indirect regulation of oxidative stress. To the best of our knowledge, however, only endogenous drugs have been delivered by EVs to regulate oxidative stress till now. And the heterogeneity of EVs may complicate the regulation of oxidative stress. Therefore, this short review aims to draw more attention to the EVs-based regulation of oxidative stress, and we hope excellent EVs-based delivery carriers that can deliver exogenous drugs to regulate oxidative stress can be exploited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...