Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430212

RESUMO

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.

2.
Virol J ; 13: 98, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296722

RESUMO

BACKGROUND: Heart and skeletal muscle inflammation (HSMI) is an emerging disease of marine-farmed Atlantic salmon Salmo salar, first recognized in 1999 in Norway, and recently associated with piscine orthoreovirus (PRV) infection. To date, HSMI lesions with presence of PRV have only been described in marine-farmed Atlantic salmon in Norway. A new HSMI-like disease in rainbow trout Oncorhynchus mykiss associated with a PRV-related virus has also been reported in Norway. METHODS: Sampling of Atlantic salmon and coho salmon was done during potential disease outbreaks, targeting lethargic/moribund fish. Fish were necropsied and tissues were taken for histopathologic analysis and testing for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS: The Atlantic salmon manifested the classical presentation of HSMI with high PRV virus loads (low Ct values) as described in Norway. The coho salmon with low Ct values had myocarditis but only in the spongy layer, the myositis of red muscle in general was mild, and the hepatic necrosis was severe. Upon phylogenetic analysis of PRV segment S1 sequences, all the Chilean PRV strains from Atlantic salmon grouped as sub-genotype Ib, whereas the Chilean PRV strains from coho salmon were more diversified, grouping in both sub-genotypes Ia and Ib and others forming a distinct new phylogenetic cluster, designated Genotype II that included the Norwegian PRV-related virus. CONCLUSIONS: To our knowledge the present work constitutes the first published report of HSMI lesions with presence of PRV in farmed Atlantic salmon outside of Europe, and the first report of HSMI-like lesions with presence of PRV in coho salmon in Chile. The Chilean PRV strains from coho salmon are more genetically diversified than those from Atlantic salmon, and some form a distinct new phylogenetic cluster, designated Genotype II.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Orthoreovirus/classificação , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Animais , Aquicultura , Basidiomycota , Chile , Análise por Conglomerados , Doenças dos Peixes/patologia , Histocitoquímica , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Reoviridae/patologia , Salmo salar , Análise de Sequência de DNA , Varicellovirus
3.
Virol J ; 11: 204, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25472899

RESUMO

BACKGROUND: Infectious salmon anemia (ISA) is a serious disease of marine farmed Atlantic salmon, Salmo salar L. caused by ISA virus (ISAV). ISAV genomic segments 5 and 6 encode surface glycoproteins hemagglutinin-esterase (HE) and F protein important for the pathogenicity of ISAV. In this study, we describe the genetic characteristics and relationship between ISAV-HPR7a and ISAV-HPR7b strains that caused the ISA outbreaks in Chile in 2013 and 2014, respectively, and the evolution of the ISAV clades since 2009 based on segment 5 and 6 sequences. METHODS: The study material included samples from six ISA cases in Chile. RNA was extracted from salmon tissues and ISAV isolated from cell culture; segments 5 and 6 were amplified by RT-PCR and compared by alignment with ISAV sequences from the GenBank database. RESULTS: ISAV-HPR7a and ISAV-HPR7b belong to the European Genotype I strains only found in Europe and Chile, and in both cases, show high similarity in segments 5 and 6 with identity between 95-96%. Our data confirm the hypothesis that the original virus was introduced to Chile in 1996. Compared to the 2007 ISAV-HPR7b isolate, the 2014 ISAV-HPR7b does not have an insertion in segment 5 and was associated with low mortality, which suggests that ISAV virulence was attenuated by the absence of the insertion in segment 5. In contrast, the highly virulent ISAV-HPR14 from April 2013 outbreak did not have the insertion in segment 5 either. CONCLUSION: Variability in the ISAV virulence markers supports the quasispecies theory that multiple evolution forces are likely to shape ISAV genetic diversity. Our findings provide evidence of continuing evolution of ISAV in the Chilean aquaculture industry.


Assuntos
Surtos de Doenças , Doenças dos Peixes/virologia , Variação Genética , Isavirus/crescimento & desenvolvimento , Isavirus/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Chile/epidemiologia , Análise por Conglomerados , Evolução Molecular , Isavirus/isolamento & purificação , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Viral/genética , Salmo salar , Análise de Sequência de DNA , Análise de Sobrevida , Virulência
4.
Virol J ; 10: 230, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23844948

RESUMO

BACKGROUND: Piscine reovirus (PRV) is a newly discovered fish reovirus of anadromous and marine fish ubiquitous among fish in Norwegian salmon farms, and likely the causative agent of heart and skeletal muscle inflammation (HSMI). HSMI is an increasingly economically significant disease in Atlantic salmon (Salmo salar) farms. The nucleotide sequence data available for PRV are limited, and there is no genetic information on this virus outside of Norway and none from wild fish. METHODS: RT-PCR amplification and sequencing were used to obtain the complete viral genome of PRV (10 segments) from western Canada and Chile. The genetic diversity among the PRV strains and their relationship to Norwegian PRV isolates were determined by phylogenetic analyses and sequence identity comparisons. RESULTS: PRV is distantly related to members of the genera Orthoreovirus and Aquareovirus and an unambiguous new genus within the family Reoviridae. The Canadian and Norwegian PRV strains are most divergent in the segment S1 and S4 encoded proteins. Phylogenetic analysis of PRV S1 sequences, for which the largest number of complete sequences from different "isolates" is available, grouped Norwegian PRV strains into a single genotype, Genotype I, with sub-genotypes, Ia and Ib. The Canadian PRV strains matched sub-genotype Ia and Chilean PRV strains matched sub-genotype Ib. CONCLUSIONS: PRV should be considered as a member of a new genus within the family Reoviridae with two major Norwegian sub-genotypes. The Canadian PRV diverged from Norwegian sub-genotype Ia around 2007 ± 1, whereas the Chilean PRV diverged from Norwegian sub-genotype Ib around 2008 ± 1.


Assuntos
Variação Genética , Genoma Viral , RNA Viral/genética , Reoviridae/genética , Salmo salar/virologia , Análise de Sequência de DNA , Animais , Canadá , Chile , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Noruega , Filogenia , Reoviridae/isolamento & purificação
5.
Virol J ; 6: 88, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19558648

RESUMO

BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. For over 25 years ISAV has caused major disease outbreaks in the Northern hemisphere, and remains an emerging fish pathogen because of the asymptomatic infections in marine wild fish and the potential for emergence of new epidemic strains. ISAV belongs to the family Orthomyxoviridae, together with influenza viruses but is sufficiently different to be assigned to its own genus, Isavirus. The Isavirus genome consists of eight single-stranded RNA species, and the virions have two surface glycoproteins; fusion (F) protein encoded on segment 5 and haemagglutinin-esterase (HE) protein encoded on segment 6. However, comparison between different ISAV isolates is complicated because there is presently no universally accepted nomenclature system for designation of genetic relatedness between ISAV isolates. The first outbreak of ISA in marine-farmed Atlantic salmon in the Southern hemisphere occurred in Chile starting in June 2007. In order to describe the molecular characteristics of the virus so as to understand its origins, how ISAV isolates are maintained and spread, and their virulence characteristics, we conducted a study where the viral sequences were directly amplified, cloned and sequenced from tissue samples collected from several ISA-affected fish on the different fish farms with confirmed or suspected ISA outbreaks in Chile. This paper describes the genetic characterization of a large number of ISAV strains associated with extensive outbreaks in Chile starting in June 2007, and their phylogenetic relationships with selected European and North American isolates that are representative of the genetic diversity of ISAV. RESULTS: RT-PCR for ISAV F and HE glycoprotein genes was performed directly on tissue samples collected from ISA-affected fish on different farms among 14 fish companies in Chile during the ISA outbreaks that started in June 2007. The genes of the F and HE glycoproteins were cloned and sequenced for 51 and 78 new isolates, respectively. An extensive comparative analysis of ISAV F and HE sequence data, including reference isolates sampled from Norway, Faroe Islands, Scotland, USA, and Canada was performed. Based on phylogenetic analysis of concatenated ISAV F and HE genes of 103 individual isolates, the isolates from the ISA outbreaks in Chile grouped in their own cluster of 7 distinct strains within Genotype I (European genotype) of ISAV, with the closest relatedness to Norwegian ISAVs isolated in 1997. The phylogenetic software program, BACKTRACK, estimated the Chile isolates diverged from Norway isolates about 1996 and, therefore, had been present in Chile for some time before the recent outbreaks. Analysis of the deduced F protein sequence showed 43 of 51 Chile isolates with an 11-amino acid insert between 265N and 266Q, with 100% sequence identity with Genotype I ISAV RNA segment 2. Twenty four different HE-HPRs, including HPR0, were detected, with HPR7b making up 79.7%. This is considered a manifestation of ISAV quasispecies HE protein sequence diversity. CONCLUSION: Taken together, these findings suggest that the ISA outbreaks were caused by virus that was already present in Chile that mutated to new strains. This is the first comprehensive report tracing ISAV from Europe to South America.


Assuntos
Surtos de Doenças , Doenças dos Peixes/virologia , Isavirus/classificação , Glicoproteínas de Membrana/genética , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Proteínas Estruturais Virais/genética , Animais , Chile/epidemiologia , Análise por Conglomerados , Doenças dos Peixes/epidemiologia , Isavirus/genética , Isavirus/isolamento & purificação , Epidemiologia Molecular , Dados de Sequência Molecular , Noruega , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA