Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 21(2): 324-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299800

RESUMO

Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth. In npLV-associated clonal tumors, 56% of insertions occurred in oncogenes or genes associated with oncogenesis or tumor suppression and surprisingly, most genes examined (11/12) had reduced expression as compared with control livers and tumors. Two examples of vector-inserted genes were the Park 7 oncogene and Uvrag tumor suppressor gene. Both these genes and their known interactive partners had differential expression profiles. Interactive partners were assigned to networks specific to liver disease and HCC via ingenuity pathway analysis. The fetal mouse model not only exposes the genotoxic potential of vectors intended for gene therapy but can also reveal genes associated with liver oncogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Dano ao DNA , Feto/patologia , Terapia Genética/efeitos adversos , Vírus da Anemia Infecciosa Equina/genética , Fígado/patologia , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Genoma , HIV/genética , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Mutagênese , Mutagênese Insercional , Mutação , Reação em Cadeia da Polimerase em Tempo Real
3.
Mol Ther ; 12(4): 763-71, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16084128

RESUMO

Gene therapy by use of integrating vectors carrying therapeutic transgene sequences offers the potential for a permanent cure of genetic diseases by stable vector insertion into the patients' chromosomes. However, three cases of T cell lymphoproliferative disease have been identified almost 3 years after retrovirus gene therapy for X-linked severe combined immune deficiency. In two of these cases vector insertion into the LMO2 locus was implicated in leukemogenesis, demonstrating that a more profound understanding is required of the genetic and molecular effects imposed on the host by vector integration or transgene expression. In vivo models to test for retro- and lentiviral vector safety prior to clinical application are therefore needed. Here we present a high incidence of lentiviral vector-associated tumorigenesis following in utero and neonatal gene transfer in mice. This system may provide a highly sensitive model to investigate integrating vector safety prior to clinical application.


Assuntos
Terapia Genética/efeitos adversos , Lentivirus/genética , Neoplasias Hepáticas/etiologia , Animais , Animais Recém-Nascidos , Feto , Técnicas de Transferência de Genes , Vetores Genéticos/genética , HIV-1/genética , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...