Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 20(1): 230, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647033

RESUMO

BACKGROUND: In mammalian cells, Aurora serine/threonine kinases (Aurora A, B, and C) are expressed in a cell cycle-dependent fashion as key mitotic regulators required for the maintenance of chromosomal stability. Aurora-A (AURKA) has been proven to be an oncogene in a variety of cancers; however, whether its expression relates to patient survival and the association with radiotherapy remains unclear in non-small cell lung cancer (NSCLC). METHODS: Here, we first analyzed AURKA expression in 63 NSCLC tumor samples by immunohistochemistry (IHC) and used an MTS assay to compare cell survival by targeting AURKA with MLN8237 (Alisertib) in H460 and HCC2429 (P53-competent), and H1299 (P53-deficient) cell lines. The radiosensitivity of MLN8237 was further evaluated by clonogenic assay. Finally, we examined the effect of combining radiation and AURKA inhibition in vivo with a xenograft model and explored the potential mechanism. RESULTS: We found that increased AURKA expression correlated with decreased time to progression and overall survival (p = 0.0447 and 0.0096, respectively). AURKA inhibition using 100 nM MLN8237 for 48 h decreases cell growth in a partially P53-dependent manner, and the survival rates of H460, HCC2429, and H1299 cells were 56, 50, and 77%, respectively. In addition, the survival of H1299 cells decreased 27% after ectopic restoration of P53 expression, and the radiotherapy enhancement was also influenced by P53 expression (DER H460 = 1.33; HCC2429 = 1.35; H1299 = 1.02). Furthermore, tumor growth of H460 was delayed significantly in a subcutaneous mouse model exposed to both MLN8237 and radiation. CONCLUSIONS: Taken together, our results confirmed that the expression of AURKA correlated with decreased NSCLC patient survival, and it might be a promising inhibition target when combined with radiotherapy, especially for P53-competent lung cancer cells. Modulation of P53 function could provide a new option for reversing cell resistance to the AURKA inhibitor MLN8237, which deserves further investigation.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Azepinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Animais , Azepinas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Camundongos Nus , Pirimidinas/uso terapêutico , Tolerância a Radiação/fisiologia , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Mol Cancer Res ; 15(7): 896-904, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28330997

RESUMO

Insulin-like growth factor binding protein 3 (IGFBP3) modulates cell growth through IGF-dependent and -independent mechanisms. Reports suggest that the serum levels of IGFBP3 are associated with various cancers and that IGFBP3 expression is significantly decreased in cisplatin (CDDP)-resistant lung cancer cells. Based on these findings, we investigated whether Igfbp3 deficiency accelerates mouse lung tumorigenesis and if expression of IGFBP3 enhances CDDP response by focusing on the IGF1 signaling cascade. To this end, an Igfbp3-null mouse model was generated in combination with KrasG12D to compare the tumor burden. Then, IGF-dependent signaling was assessed after expressing wild-type or a mutant IGFBP3 without IGF binding capacity in non-small cell lung cancer (NSCLC) cells. Finally, the treatment response to CDDP chemotherapy was evaluated under conditions of IGFBP3 overexpression. Igfbp3-null mice had increased lung tumor burden (>2-fold) and only half of human lung cancer cells survived after expression of IGFBP3, which corresponded to increased cleaved caspase-3 (10-fold), inactivation of IGF1 and MAPK signaling. In addition, overexpression of IGFBP3 increased susceptibility to CDDP treatment in lung cancer cells. These results, for the first time, demonstrate that IGFBP3 mediates lung cancer progression in a KrasG12D mouse model. Furthermore, overexpression of IGFBP3 induced apoptosis and enhanced cisplatin response in vitro and confirmed that the suppression is in part by blocking IGF1 signaling.Implications: These findings reveal that IGFBP3 is effective in lung cancer cells with high IGF1 signaling activity and imply that relevant biomarkers are essential in selecting lung cancer patients for IGF1-targeted therapy. Mol Cancer Res; 15(7); 896-904. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Animais , Apoptose/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Oncotarget ; 7(16): 21381-92, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26967383

RESUMO

Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1-/-) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1-/-:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture. In addition, cisplatin response was enhanced in human lung cancer cells when Nit1 was knocked down and Nit1-/-:KrasG12D/+ tumors showed increased sensitivity to cisplatin in vivo. Together, our data indicate that Nit1 may play a supportive role in the modulation of lung tumorigenesis and represent a novel target for NSCLCs treatment.


Assuntos
Aminoidrolases/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Células A549 , Aminoidrolases/metabolismo , Animais , Antineoplásicos/farmacologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Progressão da Doença , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...