Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37987562

RESUMO

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Assuntos
Malus , Tolerância ao Sal , Tolerância ao Sal/genética , Malus/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
2.
Front Plant Sci ; 14: 1161539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077638

RESUMO

The 14-3-3 (GRF, general regulatory factor) regulatory proteins are highly conserved and are widely distributed throughout the eukaryotes. They are involved in the growth and development of organisms via target protein interactions. Although many plant 14-3-3 proteins were identified in response to stresses, little is known about their involvement in salt tolerance in apples. In our study, nineteen apple 14-3-3 proteins were cloned and identified. The transcript levels of Md14-3-3 genes were either up or down-regulated in response to salinity treatments. Specifically, the transcript level of MdGRF6 (a member of the Md14-3-3 genes family) decreased due to salt stress treatment. The phenotypes of transgenic tobacco lines and wild-type (WT) did not affect plant growth under normal conditions. However, the germination rate and salt tolerance of transgenic tobacco was lower compared to the WT. Transgenic tobacco demonstrated decreased salt tolerance. The transgenic apple calli overexpressing MdGRF6 exhibited greater sensitivity to salt stress compared to the WT plants, whereas the MdGRF6-RNAi transgenic apple calli improved salt stress tolerance. Moreover, the salt stress-related genes (MdSOS2, MdSOS3, MdNHX1, MdATK2/3, MdCBL-1, MdMYB46, MdWRKY30, and MdHB-7) were more strongly down-regulated in MdGRF6-OE transgenic apple calli lines than in the WT when subjected to salt stress treatment. Taken together, these results provide new insights into the roles of 14-3-3 protein MdGRF6 in modulating salt responses in plants.

3.
Plant J ; 114(3): 554-569, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799443

RESUMO

In vitro shoot culture has been widely used for restoring adventitious rooting ability in rooting recalcitrant woody perennial species for the past few decades, but its molecular mechanism is largely uncovered. DNA methylation is an essential epigenetic mark that participates in many biological processes. Recent reports suggested a role of DNA methylation in vitro culture in plants. In this study, we characterized the single-base resolution DNA methylome and transcriptome of adult and in vitro shoot culture-induced rejuvenation cuttings of apple rootstock M9T337. We found a global decrease in DNA methylation during rejuvenation, which may be correlated with increased expression of DNA demethylase genes and decreased expression of DNA methyltransferase genes. We additionally documented DNA hypomethylation in 'T337'_R in gene protomer associated with higher transcript levels of several adventitious rooting-related genes. The application of a DNA methylation inhibitor (5-azacytidine) enhanced the adventitious rooting ability and the expression level of adventitious rooting-related genes, such as, MdANT, MdMPK3, MdABCB21, MdCDC48, MdKIN8B, pri-MdMIR156a5 and pri-MdMIR156a12. Together, the DNA hypomethylation is critical for the rejuvenation-dependent adventitious rooting ability in apple rootstock. In addition, increased DNA methylation was also found in thousands of genes in 'T337'_R. We additionally documented that DNA hypermethylation is required for inhibition of adventitious rooting-repressed genes, such as MdGAD5a, encoding glutamate decarboxylase, which can catalyze glutamate decarboxylated to form γ-aminobutyric acid (GABA). Our results revealed that in vitro shoot culture-dependent DNA methylation variation plays important roles in adventitious rooting in apple rootstock.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Metilação de DNA/genética , Rejuvenescimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , DNA/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Genes (Basel) ; 12(12)2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34946926

RESUMO

γ-Aminobutyric Acid (GABA), a four-carbon non-protein amino acid, is a significant component of the free amino acid pool in most prokaryotic and eukaryotic organisms. GABA is involved in pH regulation, maintaining C/N balance, plant development and defence, as well as a compatible osmolyte and an alternative pathway for glutamate utilization via anion flux. Glutamate decarboxylase (GAD, EC 4.1.1.15) and GABA transaminase (GABA-T, EC 2.6.1.19) are two key enzymes involved in the synthesis and metabolism of GABA. Recently, GABA transporters (GATs), protein and aluminium-activated malate transporter (ALMT) proteins which function as GABA receptors, have been shown to be involved in GABA regulation. However, there is no report on the characterization of apple GABA pathway genes. In this study, we performed a genome-wide analysis and expression profiling of the GABA pathway gene family in the apple genome. A total of 24 genes were identified including five GAD genes (namely MdGAD 1-5), two GABA-T genes (namely MdGABA-T 1,2), 10 GAT genes (namely GAT 1-10) and seven ALMT genes (namely MdALMT1-7). These genes were randomly distributed on 12 chromosomes. Phylogenetic analyses grouped GABA shunt genes into three clusters-cluster I, cluster II, and cluster III-which had three, four, and five genes, respectively. The expression profile analysis revealed significant MdGAD4 expression levels in both fruit and flower organs, except pollen. However, there were no significant differences in the expression of other GABA shunt genes in different tissues. This work provides the first characterization of the GABA shunt gene family in apple and suggests their importance in apple response to abiotic stress. These results can serve as a guide for future studies on the understanding and functional characterization of these gene families.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Malus/genética , Proteínas de Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Malus/crescimento & desenvolvimento , Malus/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico
5.
J Vis Exp ; (177)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34806711

RESUMO

Cytosolic Ca2+ plays a key role in plant development. Calcium imaging is the most versatile method to detect dynamic changes in Ca2+ in the cytoplasm. In this study, we obtained viable protoplasts of pulp cells by enzymatic hydrolysis. Isolated protoplasts were incubated with the small-molecule fluorescent reagent (Fluo-4/AM) for 30 min at 37 °C. The fluorescent probes successfully stained cytosolic Ca2+ but did not accumulate in vacuoles. La3+, a Ca2+ channel blocker, decreased cytoplasmic fluorescence intensity. These results suggest that Fluo-4/AM can be used to detect changes in cytosolic Ca2+ in the fruit flesh. In summary, we present a method to effectively isolate protoplasts from flesh cells of the fruit and detect Ca2+ by loading a small-molecule calcium fluorescent reagent in the cytoplasm of pulp cells.


Assuntos
Cálcio , Malus , Compostos de Anilina , Citoplasma , Corantes Fluorescentes , Coloração e Rotulagem , Xantenos
6.
Front Plant Sci ; 12: 738726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630490

RESUMO

Apple bitter pit primarily occurs during fruit ripening and storage; however, its formation mechanism remains unclear. Although it is considered that Ca2+ deficiency causes metabolic disorders in apples, there have been few studies on the mechanism of the bitter pit from the perspective of cell structure. At the fruit ripening stage, the fruit with a bitter pit on the tree was taken as the research material. In this study, the microscopic observation revealed numerous amyloplasts in the pulp cells of apples affected with bitter pit, but not in the healthy pulp. Furthermore, the results of fluorescence staining and transmission electron microscopy (TEM) revealed that the bitter pit pulp cells undergo programmed cell death (PCD), their nuclear chromosomes condense, and amyloplast forms autophagy. The cytoplasmic Ca2+ concentration in the healthy fruits was lowest near the peduncle, followed by that in the calyx, whereas it was highest at the equator. In contrast, the cytoplasmic Ca2+ concentration in apple fruits showing bitter pit disorder was lowest near the peduncle and highest in the calyx. Moreover, the cytosolic Ca2+ concentration in the flesh cells of apples with the bitter pit was much lower than that in the healthy apple flesh cells; however, the concentration of Ca2+ in the vacuoles of fruits with the bitter pit was higher than that in the vacuoles of healthy fruits. In summary, bitter pit pulp cells contain a large number of amyloplasts, which disrupts the distribution of Ca2+ in the pulp cells and causes PCD. These two processes lead to an imbalance in cell metabolism and induce the formation of a bitter pit.

7.
Hortic Res ; 8(1): 223, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611138

RESUMO

Color is an important trait for horticultural crops. Carotenoids are one of the main pigments for coloration and have important implications for photosynthesis in plants and benefits for human health. Here, we identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor named MdAP2-34 in apple (Malus domestica Borkh.). MdAP2-34 expression exhibited a close correlation with carotenoid content in 'Benin Shogun' and 'Yanfu 3' fruit flesh. MdAP2-34 promotes carotenoid accumulation in MdAP2-34-OVX transgenic apple calli and fruits by participating in the carotenoid biosynthesis pathway. The major carotenoid contents of phytoene and ß-carotene were much higher in overexpressing MdAP2-34 transgenic calli and fruit skin, yet the predominant compound of lutein showed no obvious difference, indicating that MdAP2-34 regulates phytoene and ß-carotene accumulation but not lutein. MdPSY2-1 (phytoene synthase 2) is a major gene in the carotenoid biosynthesis pathway in apple fruit, and the MdPSY2-1 gene is directly bound and transcriptionally activated by MdAP2-34. In addition, overexpressing MdPSY2-1 in apple calli mainly increases phytoene and total carotenoid contents. Our findings will advance and extend our understanding of the complex molecular mechanisms of carotenoid biosynthesis in apple, and this research is valuable for accelerating the apple breeding process.

8.
Plant Physiol ; 186(1): 549-568, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33624810

RESUMO

Deciphering the mechanism of malate accumulation in apple (Malus domestica Borkh.) fruits can help to improve their flavor quality and enhance their benefits for human health. Here, we analyzed malate content as a quantitative trait that is determined mainly by genetic effects. In a previous study, we identified an R2R3-MYB transcription factor named MdMYB44 that was a candidate gene in qtl08.1 (quantitative trait locus mapped to chromosome 8) of fruit malate content. In the present study, we established that MdMYB44 negatively regulates fruit malate accumulation by repressing the promoter activity of the malate-associated genes Ma1 (Al-Activated Malate Transporter 9), Ma10 (P-type ATPase 10), MdVHA-A3 (V-type ATPase A3), and MdVHA-D2 (V-type ATPase D2). Two single-nucleotide polymorphisms (SNPs) in the MdMYB44 promoter, SNP A/G and SNP T/-, were experimentally shown to associate with fruit malate content. The TATA-box in the MdMYB44 promoter in the presence of SNP A enhances the basal activity of the MdMYB44 promoter. The binding of a basic-helix-loop-helix transcription factor MdbHLH49 to the MdMYB44 promoter was enhanced by the presence of SNP T, leading to increased MdMYB44 transcript levels and reduced malate accumulation. Furthermore, MdbHLH49 interacts with MdMYB44 and enhances MdMYB44 activity. The two SNPs could be used in combination to select for sour or non-sour apples, providing a valuable tool for the selection of fruit acidity by the apple breeding industry. This research is important for understanding the complex molecular mechanisms of fruit malate accumulation and accelerating the development of germplasm innovation in apple species and cultivars.


Assuntos
Frutas/química , Malatos/metabolismo , Malus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição , Frutas/genética , Variação Genética , Malus/química , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Front Plant Sci ; 11: 543696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163009

RESUMO

Drought is a major environmental factor that significantly limits crop yield and quality worldwide. Basic helix-loop-helix (bHLH) transcription factors have been reported to participate in the regulation of various abiotic stresses. In this study, a bHLH transcription factor in apple, MdbHLH130, which contains a highly conserved bHLH domain, was isolated and characterized. qRT-PCR and PMdbHLH130::GUS analyses showed that MdbHLH130 was notably induced in response to dehydration stress. Compared with the wild-type (WT), transgenic apple calli overexpressing MdbHLH130 displayed greater resistance to PEG6000 treatment. In contrast, the MdbHLH130-Anti lines were more sensitive to PEG6000 treatment than WT. Moreover, ectopic expression of MdbHLH130 in tobacco improved tolerance to water deficit stress, and plants exhibited higher germination rates and survival rates, longer roots, and lower ABA-induced stomatal closure and leaf water loss than the WT control. Furthermore, overexpression of MdbHLH130 in tobacco also led to lower electrolyte leakage, malondialdehyde contents, and reactive oxygen species (ROS) accumulation and upregulation of the expression of some ROS-scavenging and stress-responsive genes under water deficit stress. In addition, MdbHLH130 transgenic tobacco plants exhibited improved tolerance to oxidative stress compared with WT. In conclusion, these results indicate that MdbHLH130 acts as a positive regulator of water stress responses through modulating stomatal closure and ROS-scavenging in tobacco.

10.
PLoS One ; 15(9): e0239705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976536

RESUMO

Adventitious root formation is essential for plant propagation, development, and response to various stresses. Reactive oxygen species (ROS) are essential for adventitious root formation. However, information on Respiratory Burst Oxidase Homolog (RBOH), a key enzyme that catalyzes the production ROS, remains limited in woody plants. Here, a total of 44 RBOH genes were identified from six Rosaceae species (Malus domestica, Prunus avium, Prunus dulcis 'Texas', Rubus occidentalis, Fragaria vesca and Rosa chinensis), including ten from M. domestica. Their phylogenetic relationships, conserved motifs and gene structures were analyzed. Exogenous treatment with the RBOH protein inhibitor diphenyleneiodonium (DPI) completely inhibited adventitious root formation, whereas exogenous H2O2 treatment enhanced adventitious root formation. In addition, we found that ROS accumulated during adventitious root primordium inducing process. The expression levels of MdRBOH-H, MdRBOH-J, MdRBOH-A, MdRBOH-E1 and MdRBOH-K increased more than two-fold at days 3 or 9 after auxin treatment. In addition, cis-acting element analysis revealed that the MdRBOH-E1 promoter contained an auxin-responsive element and the MdRBOH-K promoter contained a meristem expression element. Based on the combined results from exogenous DPI and H2O2 treatment, spatiotemporal expression profiling, and cis-element analysis, MdRBOH-E1 and MdRBOH-K appear to be candidates for the control of adventitious rooting in apple.


Assuntos
NADPH Oxidases/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Rosaceae/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rosaceae/crescimento & desenvolvimento
11.
Hortic Res ; 7(1): 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528703

RESUMO

Cytosolic Ca2+ plays a key role in signal transduction in plants. Calcium imaging is the most common approach to studying dynamic changes in the cytoplasmic Ca2+ content. Here, we used mature 'Fuji' apples (Malus pumila Mill.) to obtain viable protoplasts from flesh tissue cells by enzymatic hydrolysis; then, three small-molecule fluorescent probes (fluo-8/AM, fluo-4/AM, and rhod-2/AM) were loaded into the protoplasts. All three Ca2+ fluorescent probes successfully entered the cytoplasm but did not enter the vacuole. Both the Ca2+ chelator (EGTA) and Ca2+ channel blocker (La3+) reduced the fluorescence intensity in the cytoplasm. The calcium ionophore A23187 increased the fluorescence intensity in the cytoplasm at 5 µmol/L but decreased it at 50 µmol/L. Additionally, A23187 reversed the fluorescence intensity in the cytoplasm, which was decreased by La3+. Ionomycin is also a calcium ionophore that can increase the fluorescence intensity of calcium in the cytoplasm. These results suggest that small-molecule Ca2+ fluorescent probes can be used to detect changes in cytosolic calcium levels in the cells of fruit flesh tissue. In addition, the optimum concentration of fluo-8/AM was determined to be 5 µmol/L. This was the first time that protoplasts have been isolated from apple flesh tissue cells and small-molecule fluorescent probes have been used to detect calcium in the cytoplasm of flesh tissue cells. This study provides a new method to study calcium signal transduction in fruit flesh tissue.

12.
J Agric Food Chem ; 68(15): 4292-4304, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32207980

RESUMO

The color of apple skin, particularly anthocyanin-based coloration, is a key factor determining market acceptance. The mechanisms of anthocyanin accumulation in apples with different skin color patterns (i.e., striped and blushed) were analyzed. In total, 14 anthocyanins and 5 procyanidins were simultaneously assayed in red blushed-skin mutants (CF-B1 and CF-B2) and red striped-skin parents (CF-S1 and CF-S2), and 13 significant differences were revealed. Anthocyanin accumulation was significantly higher in the red blushed-skin apples than it was in the parents. The transcript levels of anthocyanin biosynthesis genes and regulatory factors (MdMYB10, MdbHLH3, and MdWD40) were associated with different skin color patterns during the coloring period at 4, 6, and 8 days after the fruits were debagged. The methylation levels of the MdMYB10 promoter regions -1203 to -779 bp, -1667 to -1180 bp, and -2295 to -1929 bp were associated with different skin color patterns, and there was more methylation in red striped-skin apples. These results improve our understanding of anthocyanin accumulation and its underlying molecular mechanism in apples with different skin color patterns, thereby providing valuable information for apple breeding.


Assuntos
Antocianinas/biossíntese , Frutas/metabolismo , Malus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Cor , Metilação de DNA , Frutas/química , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/química , Malus/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
13.
BMC Plant Biol ; 20(1): 72, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054455

RESUMO

BACKGROUND: The B-BOX (BBX) proteins are the class of zinc-finger transcription factors and can regulate plant growth, development, and endure stress response. In plants, the BBX gene family has been identified in Arabidopsis, rice, and tomato. However, no systematic analysis of BBX genes has been undertaken in grapevine. RESULTS: In this study, 24 grapevine BBX (VvBBX) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Phylogenetic analysis divided VvBBX genes into five subgroups. Numerous cis-acting elements related to plant development, hormone and/or stress responses were identified in the promoter of the VvBBX genes. The tissue-specific expressional dynamics of VvBBX genes demonstrated that VvBBXs might play important role in plant growth and development. The transcript analysis from transcriptome data and qRT-PCR inferred that 11 VvBBX genes were down-regulated in different fruit developmental stages, while three VvBBX genes were up-regulated. It is also speculated that VvBBX genes might be involved in multiple hormone signaling (ABA, ethylene, GA3, and CPPU) as transcriptional regulators to modulate berry development and ripening. VvBBX22 seems to be responsive to multiple hormone signaling, including ABA, ethylene GA3, and CPPU. Some VvBBX genes were strongly induced by Cu, salt, waterlogging, and drought stress treatment. Furthermore, the expression of VvBBX22 proposed its involvement in multiple functions, including leaf senescence, abiotic stress responses, fruit development, and hormone response. CONCLUSIONS: Our results will provide the reference for functional studies of BBX gene family, and highlight its functions in grapevine berry development and ripening. The results will help us to better understand the complexity of the BBX gene family in abiotic stress tolerance and provide valuable information for future functional characterization of specific genes in grapevine.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Frutas/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/crescimento & desenvolvimento
14.
Plant Mol Biol ; 102(3): 287-306, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872308

RESUMO

KEY MESSAGE: At the early stage of pollination, the difference in gene expression between compatibility and incompatibility is highly significant about the pollen-specific expression of the LRR gene, resistance, and defensin genes. In Rosaceae, incompatible pollen can penetrate into the style during the gametophytic self-incompatibility response. It is therefore considered a stylar event rather than a stigmatic event. In this study, we explored the differences in gene expression between compatibility and incompatibility in the early stage of pollination. The self-compatible pear variety "Jinzhuili" is a naturally occurring bud mutant from "Yali", a leading Chinese native cultivar exhibiting typical gametophytic self-incompatibility. We collected the styles of 'Yali' and 'Jinzhuili' at 0.5 and 2 h after self-pollination and then performed high-throughput sequencing. According to the KEGG analysis of the differentially expressed genes, several metabolic pathways, such as "Plant hormone signal transduction", "Plant-pathogen interaction", are the main pathways was the most represented pathway. Quantitative PCR was used to validate these differential genes. The expression levels of genes related to pollen growth and disease inhibition, such as LRR (Leucine-rich repeat extensin), resistance, defensin, and auxin, differed significantly between compatible and incompatible pollination. Interestingly, at 0.5 h, most of these genes were upregulated in the compatible pollination system compared with the incompatible pollination system. Calcium transport, which requires ATPase, also demonstrated upregulated expression. In summary, the self-incompatibility reaction was initiated when the pollen land on the stigma.


Assuntos
Pólen/genética , Polinização/genética , Polinização/fisiologia , Pyrus/genética , Pyrus/fisiologia , RNA-Seq/métodos , Morte Celular , Técnicas de Reprogramação Celular , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Ácidos Indolacéticos , Oxigenases/genética , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento
15.
BMC Genomics ; 20(1): 786, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664916

RESUMO

BACKGROUND: The plant-specific TCP transcription factors play different functions in multiple processes of plant growth and development. TCP family genes have been identified in several plant species, but no comprehensive analysis of the TCP family in grapevine has been undertaken to date, especially their roles in fruit development. RESULTS: A total of 18 non-redundant grapevine TCP (VvTCP) genes distributing on 11 chromosomes were identified. Phylogenetic and structural analysis showed that VvTCP genes were divided into two main classes - class I and class II. The Class II genes were further classified into two subclasses, the CIN subclass and the CYC/TB1 subclass. Segmental duplication was a predominant duplication event which caused the expansion of VvTCP genes. The cis-acting elements analysis and tissue-specific expression patterns of VvTCP genes demonstrated that these VvTCP genes might play important roles in plant growth and development. Expression patterns of VvTCP genes during fruit development and ripening were analyzed by RNA-Seq and qRT-PCR. Among them, 11 VvTCP genes were down-regulated during different fruit developmental stages, while only one VvTCP genes were up-regulated, suggesting that most VvTCP genes were probably related to early development in grapevine fruit. Futhermore, the expression of most VvTCP genes can be inhibited by drought and waterlogging stresses. CONCLUSIONS: Our study establishes the first genome-wide analysis of the grapevine TCP gene family and provides valuable information for understanding the classification and functions of the TCP genes in grapevine.


Assuntos
Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Motivos de Aminoácidos , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Sintenia , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcriptoma , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
16.
Microbiol Res ; 216: 1-11, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269849

RESUMO

Compost amendment reportedly improved apple tree growth in replant soils. However, its effects should be evaluated at different soil depths and locations. This study investigated the impact of soil improvement with compost on soil physicochemical properties and bacterial community structure of a replanted apple orchard in comparison with the original orchard without compost improvement. The V1-V3 region of the bacterial 16S rRNA gene was subjected to high-throughput 454 pyrosequencing, and data were analyzed using the Mothur pipeline. The results showed that the soil improvement benefited tree growth and fruit quality during the study period. The compost amendment markedly increased tree height and stem diameter by a range of 6.1%-21.0% and 4.0%-14.0%, respectively. Fruit yield (9.5%), average weight (9.6%), and soluble solid content (5.6%) were also increased by compost amendment compared to those of the unimproved treatment. The pH, organic matter, and available N, P, and K contents were significantly increased by 5.7%-21.9%, 0.2%-62.9%, 9.3%-29.3%, 36.7%-64.5%, and 17.2%-100.3% in the compost improved soil. The pyrosequencing data showed that the soil improvement changed the bacterial community structure at all soil depths (0-20 cm and 20-40 cm) and locations (in-row and inter-row) considered; e.g., the relative abundance of Proteobacteria (20.2%), Bacteroidetes (2.5%), and Cyanobacteria (1.0%) was increased while that of Chloroflexi (5.5%), Acidobacteria (5.2%), Nitrospirae (4.5%), Gemmatimonadetes (3.8%), and Actinobacteria (1.8%) was decreased. The relative abundance of some dominant genera Burkholderia (2.3%), Pseudomonas (1.0%), and Paenibacillus (0.5%) were enhanced in the compost improved soil. Moreover, other dominant genera such as Nitrospira (6.4%), Gemmatimonas (2.2%), and Phenylobacterium (0.3%) were reduced by the application of compost. Our results indicate that soil improvement benefits the growth of tree and fruit quality, and is likely mediated by increased soil pH, organic matter, and available nutrient contents and beneficial bacterial community composition.


Assuntos
Bactérias/classificação , Malus/microbiologia , Consórcios Microbianos , Filogenia , Microbiologia do Solo , Solo/química , Bactérias/genética , Biodiversidade , Fenômenos Químicos , DNA Bacteriano/genética , Frutas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Malus/crescimento & desenvolvimento , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Análise de Sequência
17.
Cell Calcium ; 71: 15-23, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604960

RESUMO

Hard end is a physiological disorder of pear fruit that is frequently observed in the 'Whangkeumbae' (Pyrus pyrifolia) variety, however, the mechanisms that are involved in its development are poorly understood. In this study, we explored the causes of hard end disorder in pear fruit in relation to calcium deficiency. During fruit development, the ratio of Ca/N, Ca/K, Ca/Mg and the content of B were significantly lower in the hard end fruit as compared to normal fruit. However, no calcium deficiency was detected in the soil and leaves of the orchard where the hard end fruit were located. Additionally, the Ca2+ influx in the calyx of hard end fruit was lower than that of normal fruit at 90 d after anthesis. The free Ca2+ and storage Ca2+ in the flesh cells of hard end fruit were less than that of normal fruit during fruit development, while an opposite tendency was observed at 120 d after anthesis (harvest day). In hard end fruit, the Ca2+ transport-related gene, PpCNGC1 (Cyclic nucleotide-gated ion channel 1), was up-regulated; whereas the Ca2+ sensor-related genes of PpCIPKs, PpCDPK28 and PpCML41 were all down-regulated. Spraying with a 2% calcium chloride (CaCl2) solution inhibited the incidence rate of hard end disorder and decreased fruit firmness and lignin content during storage. Additionally, the ratio of Ca/N, Ca/K, Ca/Mg and the content of B all increased on harvest day. Our study suggests that low Ca2+ influx leads to less Ca2+ into the pear fruit, which results in an intracellular imbalance of Ca2+ and consequently triggers the development of hard end disorder.


Assuntos
Cálcio/metabolismo , Frutas/química , Espaço Intracelular/metabolismo , Pyrus/química , Cloreto de Cálcio/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Folhas de Planta/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/química , Pyrus/efeitos dos fármacos , Pyrus/genética , Solo/química
18.
Front Plant Sci ; 8: 1164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729872

RESUMO

Among the Rosaceae species, the gametophytic self-incompatibility (GSI) is controlled by a single multi-allelic S locus, which is composed of the pistil-S and pollen-S genes. The pistil-S gene encodes a polymorphic ribonuclease (S-RNase), which is essential for identifying self-pollen. However, the S-RNase system has not been fully characterized. In this study, the self-S-RNase inhibited the Ca2+-permeable channel activity at pollen tube apices and the selectively decreased phospholipase C (PLC) activity in the plasma membrane of Pyrus pyrifolia pollen tubes. Self-S-RNase decreased the Ca2+ influx through a PLC-mediated signaling pathway. Phosphatidylinositol-specific PLC has a 26-amino acid insertion in pollen tubes of the 'Jinzhuili' cultivar, which is a spontaneous self-compatible mutant of the 'Yali' cultivar. 'Yali' plants exhibit a typical S-RNase-based GSI. Upon self-pollination, PLC gene expression is significantly higher in 'Jinzhuili' pollen tubes than that in 'Yali' pollen tubes. Moreover, the PLC in pollen tubes can only interact with one of the two types of S-RNase from the style. In the Pyrus x bretschneideri Rehd, the PLC directly interacted with the S7-RNase in the pollen tube, but not with the S34-RNase. Collectively, our results reveal that the effects of S-RNase on PLC activity are required for S-specific pollen rejection, and that PLC-IP3 participates in the self-incompatibility reaction of Pyrus species.

19.
Cell Calcium ; 60(5): 299-308, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397621

RESUMO

In S-RNase-based self-incompatibility, S-RNase was previously thought to function as a selective RNase that inhibits pollen whose S-haplotype matches that in the pistil. In this study, we showed that S-RNase has a distinct effect on the regulation of Ca2+-permeable channel activity in the apical pollen tube in Pyrus pyrifolia. While non-self S-RNase has no effect, self S-RNase decreases the activity of Ca2+ channels and disrupts the Ca2+ gradient at the tip of the growing pollen tube during the gametophytic self-incompatibility (GSI) response. Extracellular Ca2+ influx was suppressed 5min after self S-RNase treatment, and self-pollen tube growth was reduced at 50min after self S-RNase treatment. In the self-incompatible response, the expression of Ca2+-related genes was inhibited before RNA degradation. Therefore, self S-RNase suppresses Ca2+ influx prior to arresting pollen tube growth via RNA degradation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Tubo Polínico/metabolismo , Pyrus/metabolismo , Autoincompatibilidade em Angiospermas , Ribonucleases/metabolismo
20.
PLoS One ; 11(4): e0152320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055240

RESUMO

The most direct technique for studying calcium, which is an essential element for pollen tube growth, is Ca2+ imaging. Because membranes are relatively impermeable, the loading of fluorescent Ca2+ probes into plant cells is a challenging task. Thus, we have developed a new method of loading fluo-4 acetoxymethyl ester into cells that uses a cell lysis solution to improve the introduction of this fluorescent dye into pollen tubes. Using this method, the loading times were reduced to 15 min. Furthermore, loading did not have to be performed at low (4°C) temperatures and was successful at room temperature, and pluronic F-127 was not required, which would theoretically allow for the loading of an unlimited number of cells. Moreover, the method can also be used to fluorescently stain root hairs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Corantes Fluorescentes/química , Raízes de Plantas/metabolismo , Tubo Polínico/metabolismo , Pyrus/metabolismo , Microscopia de Fluorescência , Raízes de Plantas/citologia , Tubo Polínico/citologia , Poloxâmero/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...