Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247545

RESUMO

Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.

2.
Mycotoxin Res ; 40(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217761

RESUMO

T-2 toxin is a representative trichothecene that is widely detected in corn, wheat and other grain feeds. T-2 toxin has stable physical and chemical properties, making it difficult to remove from food and feed. Hence, T-2 toxin has become an unavoidable pollutant in food for humans and animals. T-2 toxin can enter brain tissue by crossing the blood-brain barrier and leads to congestion, swelling and even apoptosis of neurons. T-2 toxin poisoning can directly lead to clinical symptoms (anti-feeding reaction and decline of learning and memory function in humans and animals). Maternal T-2 toxin exposure also exerted toxic effects on the central nervous system of offspring. Oxidative stress is the core neurotoxicity mechanism underlying T-2 toxin poison. Oxidative stress-mediated apoptosis, mitochondrial oxidative damage and inflammation are all involved in the neurotoxicity induced by T-2 toxin. Thus, alleviating oxidative stress has become a potential target for relieving the neurotoxicity induced by T-2 toxin. Future efforts should be devoted to revealing the neurotoxic molecular mechanism of T-2 toxin and exploring effective therapeutic drugs to alleviate T-2 toxin-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Toxina T-2 , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Estresse Oxidativo , Barreira Hematoencefálica , Apoptose , Antioxidantes/metabolismo , Síndromes Neurotóxicas/etiologia
3.
Ecotoxicol Environ Saf ; 269: 115743, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035519

RESUMO

Deoxynivalenol (DON) is the most common mycotoxin in food and feed, which can cause undesirable effects, including diarrhea, emesis, weight loss, and growth delay in livestock. Intestinal epithelial cells were the main target of DON, which can cause oxidative stress and inflammatory injury. Tanshinone IIA (Tan IIA) is fat-soluble diterpene quinone, which is the most abundant active ingredient in salvia miltiorrhiza plant with antioxidant and anti-inflammatory characteristics. However, it is not clear whether Tan IIA can protect against or inhibit intestinal oxidative stress and inflammatory injury under DON exposure. This study aimed to explore the protective effect of Tan IIA on DON-induced toxicity in porcine jejunum epithelial cells (IPEC-J2). Cells were exposed to 0, 0.5, 1.0, 2.0 µM DON and/or 45 µg/mL TAN ⅡA to detect oxidative stress indicators. inflammatory cytokines, NF-κB expression, NLRP3 inflammasome and pyroptosis-related factors. In this study, DON exposure caused IPEC-J2 cells oxidative stress by elevating ROS and 8-OHdG content, inhibited GSH-Px activity. Furthermore, DON increased pro-inflammatory factor (TNF-α, IL-1ß, IL-18 and IL-6) expression and decreased the anti-inflammatory factor (IL-10) expression, causing inflammatory response via triggering NF-κB pathway. Interestingly, above changes were alleviated after Tan IIA treatment. In addition, Tan IIA relieved DON-induced pyroptosis by suppressing the expression of pyroptosis-related factors (NLRP3, Caspase-1, GSDMD, IL-1ß, and IL-18). In general, our data suggested that Tan IIA can ameliorate DON-induced intestinal epithelial cells injury associated with suppressing the pyroptosis signaling pathway. Our findings pointed that Tan IIA could be used as the potential therapeutic drugs on DON-induced enterotoxicity.


Assuntos
Abietanos , Interleucina-18 , NF-kappa B , Tricotecenos , Suínos , Animais , NF-kappa B/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Linhagem Celular , Anti-Inflamatórios/farmacologia , Células Epiteliais
4.
Antioxidants (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38001811

RESUMO

The intestinal tract is a target organ for Deoxynivalenol (DON) absorption and toxicity. Mitochondrial homeostasis imbalance is the gut toxicity mechanism of DON. Lycopene (LYC) has intestinal protective effects and can maintain mitochondrial homeostasis in response to various danger signals. The purpose of this study was to explore the protective effect of LYC on DON-induced IPEC-J2 cells damage. These results showed that DON exposure induced an increase in the levels of malondialdehyde and reactive oxygen species (ROS) in IPEC-J2 cells. DON impaired IPEC-J2 cell barrier function and caused mitochondrial dysfunction by inducing mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (MMP) reducing, destroying mitochondrial fission factors, mitochondrial fusion factors, and mitophagy factors expression. However, adding LYC can reduce the toxic effects of DON-induced IPEC-J2 cells and decrease cellular oxidative stress, functional damage, mitochondrial dynamics imbalance, and mitophagy processes. In conclusion, LYC maintains mitochondrial homeostasis to counteract the IPEC-J2 cells' toxicity of DON.

5.
Food Chem Toxicol ; 179: 113982, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37553049

RESUMO

The presence of anorexia in animals is the most well-known clinical symptom of T-2 toxin poisoning. T-2 toxin is the most characteristic type A toxin in the trichothecene mycotoxins. The consumption of T-2 toxin can cause anorexic response in mice, rats, rabbits, and other animals. In this review, the basic information of T-2 toxin, appetite regulation mechanism and the molecular mechanism of T-2 toxin-induced anorectic response in animals are presented and discussed. The objective of this overview is to describe the research progress of anorexia in animals produced by T-2 toxin. T-2 toxin mainly causes antifeedant reaction through four pathways: vagus nerve, gastrointestinal hormone, neurotransmitter and cytokine. This review aims to give an academic basis and useable reference for the prevention and treatment of clinical symptoms of anorexia in animals resulting from T-2 toxin.


Assuntos
Depressores do Apetite , Micotoxinas , Toxina T-2 , Camundongos , Ratos , Animais , Coelhos , Anorexia/induzido quimicamente , Micotoxinas/efeitos adversos , Neurotransmissores
6.
Ecotoxicol Environ Saf ; 263: 115247, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453270

RESUMO

The most prevalent contaminated mycotoxin in feed and grain is T-2 toxin. The T-2 toxin's primary action target is the gut because it is the main organ of absorption. T-2 toxin can cause intestinal damage, but, few molecular mechanisms have been elucidated. It is important to discover the key pathways by which T-2 toxin causes enterotoxicity. In this research, IPEC-J2 cells are used as a cell model to investigate the function of the MAPK signaling pathway in T-2 toxin-induced intestinal epithelial cell damage. Throughout this research, T-2 toxin results in functional impairment in IPEC-J2 cells by reducing the TJ proteins Claudin, Occludin-1, ZO-1, N-cadherin, and CX-43 expression. T-2 toxin significantly reduced the survival of IPEC-J2 cells and increased LDH release in a dose-dependent way. T-2 toxin induced IPEC-J2 cell oxidative stress by raising ROS and MDA content, and mitochondrial damage was indicated by a decline in MMP and an increase in the opening degree of MPTP. T-2 toxin upregulated the expression of ERK, P38 and JNK, which triggered the MAPK signaling pathway. In addition, T-2 toxin caused IPEC-J2 cell inflammation responses reflected by increased the levels of inflammation-related factors IL-8, p65, P-p65 and IL-6, and down-regulated IL-10 expression level. Inhibition JNK molecule can ease IPEC-J2 cell functional impairment and inflammatory response. In conclusion, as a consequence of the T-2 toxin activating the JNK molecule, oxidative stress and mitochondrial damage are induced, which impair cellular inflammation.


Assuntos
Toxina T-2 , Humanos , Toxina T-2/toxicidade , Intestinos , Estresse Oxidativo , Transdução de Sinais , Células Epiteliais , Inflamação/induzido quimicamente
7.
Environ Pollut ; 330: 121784, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169237

RESUMO

T-2 toxin, a type A trichothecene, is a secondary metabolite produced by Fusarium poae, Fusarium sporotrichioides, and Fusarium tricinctum. As the most toxic trichothecenes, T-2 toxin causes severe damage to multiple organs, especially to liver. However, the contamination of T-2 toxin covers a wide range of plants, including nuts, grains, fruits and herbs globally. And due to chemical stability of T-2 toxin, it is difficult to be completely removed from the food and feeds, which poses a great threat to human and animal health. Liver is the major detoxifying organ which also makes it the main target of T-2 toxin. After being absorbed by intestine, the first pass effect will reduce the level of T-2 toxin in blood indicating that liver is the main metabolic site of T-2 toxin in vivo. In this review, updated researches on the hepatotoxicity of T-2 toxin were summarized. The metabolic characteristic of T-2 toxin in vivo was introduced. The main hepatotoxic mechanisms of T-2 toxin are oxidative stress, mitochondrial damage, deoxyribonucleic acid (DNA) methylation, autophagy and apoptosis. The remission of the hepatotoxicity induced by T-2 toxin was also studied in this review followed by new findings on the detoxification of hepatotoxicity induced by T-2 toxin. The review aimed to offer a comprehensive view and proposes new perspectives in the field of hepatotoxicity induced by T-2 toxin.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fusarium , Toxina T-2 , Animais , Humanos , Toxina T-2/toxicidade , Fusarium/metabolismo
8.
Toxics ; 11(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112621

RESUMO

T-2 toxin, the most toxic type A trichothecene mycotoxin, is produced by Fusarium, and is widely found in contaminated feed and stored grains. T-2 toxin is physicochemically stable and is challenging to eradicate from contaminated feed and cereal, resulting in food contamination that is inescapable and poses a major hazard to both human and animal health, according to the World Health Organization. Oxidative stress is the upstream cause of all pathogenic variables, and is the primary mechanism through which T-2 toxin causes poisoning. Nuclear factor E2-related factor 2 (Nrf2) also plays a crucial part in oxidative stress, iron metabolism and mitochondrial homeostasis. The major ideas and emerging trends in future study are comprehensively discussed in this review, along with research progress and the molecular mechanism of Nrf2's involvement in the toxicity impact brought on by T-2 toxin. This paper could provide a theoretical foundation for elucidating how Nrf2 reduces oxidative damage caused by T-2 toxin, and a theoretical reference for exploring target drugs to alleviate T-2 toxin toxicity with Nrf2 molecules.

9.
Food Chem Toxicol ; 175: 113730, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36925038

RESUMO

Deoxynivalenol (DON) is the most common mycotoxin contaminant in food and feed. DON accumulation in food chain severely threatens human and animal health due to the toxic effects on the reproduction system. However, the underlying mechanism of DON on male reproductive dysfunction is still in debate and there is little information about whether DON triggers testicular ferroptosis. In this study, male C57BL/6 mice were divided into 4 groups and treated by oral gavage with 0, 0.5, 1.0, 2.0 mg/kg BW DON for 28 days. Firstly, we proved that male reproduction dysfunction was induced by DON through assessing testicular histopathology, serum testosterone level as well as blood-testis barrier integrity. Then, we verified ferroptosis occurred in DON-induced testicular dysfunction model through disrupting iron homeostasis, increasing lipid peroxidation and inhibiting system Xc-/Gpx4 axis. Notably, the present data showed DON reduced antioxidant capacity via blocking Nrf2 pathway to lead to the further weakness of ferroptosis resistance. Altogether, these results indicated that DON caused mice testicular ferroptosis associated with inhibiting Nrf2/System Xc-/GPx4 axis, which provided that maintaining testicular iron homeostasis and activating Nrf2 pathway may be a potential target for alleviating testicular toxicity of DON in the future.


Assuntos
Ferroptose , Humanos , Masculino , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Ferro/metabolismo
10.
Ecotoxicol Environ Saf ; 253: 114695, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857919

RESUMO

T-2 toxin is an unavoidable food and feed contaminant that seriously threatens human and animal health. Exposure to T-2 toxin can cause testosterone synthesis disorder in male animals, but the molecular mechanism is still not completely clear. The MAPK pathway participates in the regulation of testosterone synthesis by Leydig cells, but it is unclear whether the MAPK pathway participates in T-2 toxin-induced testosterone synthesis disorders. In this research, testosterone synthesis capacity, testosterone synthase expression and MAPK pathway activation were examined in male mice and TM3 cells exposed to T-2 toxin. The results showed that T-2 toxin exposure decreased testicular volume and caused pathological changes in the microstructure and ultrastructure of testicular Leydig cells. T-2 toxin exposure also decreased testicular testosterone content and the protein expression of testosterone synthase. In vitro, T-2 toxin inhibited cell viability and decreased the expression of testosterone synthase in TM3 cells, and it decreased the testosterone contents in cell culture supernatants. Moreover, T-2 toxin activated the MAPK pathway by increasing the expression of p38, JNK and ERK as well as the expression of p-p38, p-JNK and p-ERK in testis and TM3 cells. The p38 molecular inhibitor (SB203580) significantly alleviated the T-2 toxin-induced decrease in testosterone synthase expression in TM3 cells and the T-2 toxin-induced reduction in testosterone content in TM3 cell culture supernatants. In summary, p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder.


Assuntos
Células Intersticiais do Testículo , Toxina T-2 , Masculino , Camundongos , Humanos , Animais , Células Intersticiais do Testículo/metabolismo , Toxina T-2/toxicidade , Testosterona/metabolismo , Testículo/metabolismo , Células Cultivadas
11.
Nutrients ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558426

RESUMO

Iron is an important metal element involved in the regulation of male reproductive functions and has dual effects on testicular tissue. A moderate iron content is necessary to maintain testosterone synthesis and spermatogenesis. Iron overload can lead to male reproductive dysfunction by triggering testicular oxidative stress, lipid peroxidation, and even testicular ferroptosis. Ferroptosis is an iron-dependent form of cell death that is characterized by iron overload, lipid peroxidation, mitochondrial damage, and glutathione peroxidase depletion. This review summarizes the regulatory mechanism of ferroptosis and the research progress on testicular ferroptosis caused by endogenous and exogenous toxicants. The purpose of the present review is to provide a theoretical basis for the relationship between ferroptosis and male reproductive function. Some toxic substances or danger signals can cause male reproductive dysfunction by inducing testicular ferroptosis. It is crucial to deeply explore the testicular ferroptosis mechanism, which will help further elucidate the molecular mechanism of male reproductive dysfunction. It is worth noting that ferroptosis does not exist alone but rather coexists with other forms of cell death (such as apoptosis, necrosis, and autophagic death). Alleviating ferroptosis alone may not completely reverse male reproductive dysfunction caused by various risk factors.


Assuntos
Ferroptose , Sobrecarga de Ferro , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Peroxidação de Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...