Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
J Appl Toxicol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981847

RESUMO

The overactivation of ß-adrenergic receptors (ß-ARs) can result in acute myocardial ischemic injury, culminating in myocardial necrosis. Berberine (BBR) has exhibited promising potential for prevention and treatment in various heart diseases. However, its specific role in mitigating myocardial injury induced by acute ß-AR overactivation remains unexplored. This study aimed to investigate the effects and underlying mechanisms of BBR pretreatment in a rat model of acute ß-AR overactivation induced by a single dose of the nonselective ß-adrenergic agonist isoprenaline (ISO). Rats were pretreated with saline or BBR (100 mg/kg/day) via gavage for 14 consecutive days, followed by a subcutaneous injection of ISO or saline on the 14th day. The findings indicated that BBR pretreatment significantly attenuated myocardial injury in ISO-stimulated rats, as evidenced by reduced pathological inflammatory infiltration, necrosis, and serum markers of myocardial damage. Additionally, BBR decreased oxidative stress and inflammation in the system and heart. Furthermore, BBR pretreatment enhanced myocardial ATP levels, improved mitochondrial dysfunction through increased Drp1 phosphorylation, and augmented myocardial autophagy. In a CoCl2-induced H9c2 cell hypoxic injury model, BBR pretreatment mitigated cellular injury, apoptosis, and oxidative stress while upregulating Drp1 and autophagy-associated proteins. Mechanistically, BBR pretreatment activated AKT, AMPK, and LKB1 both in vivo and in vitro, implicating the involvement of the AKT and LKB1/AMPK signaling pathways in its cardioprotective effects. Our study demonstrated the protective effects of BBR against myocardial injury induced by acute ß-AR overactivation in rats, highlighting the potential of BBR as a preventive agent for myocardial injury associated with ß-adrenergic overactivation.

2.
Noro Psikiyatr Ars ; 61(2): 107-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868845

RESUMO

Introduction: Our object is to examine the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on the symptoms, cognitive functions and subjective experiences in patients with chronic schizophrenia and to enhance the overall understanding of the TMS method. Methods: Thirty three patients who had chronic schizophrenia were included in the study. Seventeen patients received rTMS and 16 received sham. The Positive and Negative Syndrome Scale, Repeatable Battery for the Assessment of Neuropsychological Status Scale, Insight and Treatment Attitudes Questionnaire and a self-experience checklist developed by the researchers to evaluate post-TMS experiences were applied to all patients. Results: There were no statistical differences between the groups with regard to symptoms, cognitive functions and insight. However rTMS group reported overall better treatment experience and more positive subjective experiences. Conclusion: rTMS treatment did not cause any improvement in symptoms, cognitive functions and insight but provided a better self-experience, which might improve treatment compliance.

3.
Cancer Res ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862269

RESUMO

YAP is a central player in cancer development with functions extending beyond its recognized role in cell growth regulation. Recent work has identified a link between YAP/TAZ and the DNA damage response. Here, we investigated the mechanistic underpinnings of the crosstalk between DNA damage repair and YAP activity. Ku70, a key component of the non-homologous end joining pathway to repair DNA damage, engaged in a dynamic competition with TEAD4 for binding to YAP, limiting the transcriptional activity of YAP. Depletion of Ku70 enhanced interaction between YAP and TEAD4 and boosted YAP transcriptional capacity. Consequently, Ku70 loss enhanced tumorigenesis in colon cancer and hepatocellular carcinoma (HCC) in vivo. YAP impeded DNA damage repair and elevated genome instability by inducing PARP1 degradation through the SMURF2-mediated ubiquitin-proteasome pathway. Analysis of HCC patient samples substantiated the link between Ku70 expression, YAP activity, PARP1 levels, and genome instability. In conclusion, this research provides insight into the mechanistic interactions between YAP and key regulators of DNA damage repair, highlighting the role of a Ku70-YAP-PARP1 axis in preserving genome stability.

4.
Comput Biol Chem ; 112: 108117, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852360

RESUMO

Understanding the mechanisms underlying interactions between drugs and target proteins is critical for drug discovery. In our earlier studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which enables the representation of a protein's 3D structure as a vector of integers (TSR keys). These TSR keys correspond to substructures of the 3D structure of a protein and are computed based on the triangles constructed by all possible triples of Cα atoms within the protein. In this study, we report on a new TSR-based algorithm for probing drug and target interactions. Specifically, we have extended the previous algorithm in three novel directions: TSR keys for representing the 3D structure of a drug or a ligand, cross TSR keys between drugs and their targets and intra-residual TSR keys for phosphorylated amino acids. The outcomes illustrate the key contributions as follows: (i) The TSR-based method, which uses the TSR keys as features, is unique in its capability to interpret hierarchical relationships of drugs as well as drug - target complexes using common and specific TSR keys. (ii) The method can distinguish not only the binding sites from the rest of the protein structures, but also the binding sites of primary targets from those of off-targets. (iii) The method has the potential to correlate the 3D structures of drugs with their functions. (iv) Representation of 3D structures by TSR keys has its unique advantage in terms of ease of making searching for similar substructures across structure datasets easier. In summary, this study presents a novel computational methodology, with significant advantages, for providing insights into the mechanism underlying drug and target interactions.

5.
Chembiochem ; : e202400130, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923096

RESUMO

Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples. This technique combines multiple acoustic force generators with the smallest atomic magnetometer designed for biological research. Utilizing this technique, we demonstrate that mutating EF-G at the GTP binding pocket results in the ribosome moving only two nucleotides on both ends of the mRNA, thereby compromising ribosome translocation. This finding suggests a direct link between GTP hydrolysis and ribosome translocation. Our results not only provide mechanistic insights into the role of GTP binding pocket but also illuminate how allosteric mutations can manipulate translocation. We anticipate broader applications of our technique in the ribosome field, leveraging its high efficiency and single-nucleotide resolution.

6.
Drug Des Devel Ther ; 18: 2143-2167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882045

RESUMO

Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.


Assuntos
Amidoidrolases , Ansiolíticos , Endocanabinoides , Inibidores Enzimáticos , Monoacilglicerol Lipases , Humanos , Ansiolíticos/farmacologia , Ansiolíticos/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Animais , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo
7.
Quant Imaging Med Surg ; 14(5): 3628-3642, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720862

RESUMO

Background: Due to the variations in surgical approaches and prognosis between intraspinal schwannomas and meningiomas, it is crucial to accurately differentiate between the two prior to surgery. Currently, there is limited research exploring the implementation of machine learning (ML) methods for distinguishing between these two types of tumors. This study aimed to establish a classification and regression tree (CART) model and a random forest (RF) model for distinguishing schwannomas from meningiomas. Methods: We retrospectively collected 88 schwannomas (52 males and 36 females) and 51 meningiomas (10 males and 41 females) who underwent magnetic resonance imaging (MRI) examinations prior to the surgery. Simple clinical data and MRI imaging features, including age, sex, tumor location and size, T1-weighted images (T1WI) and T2-weighted images (T2WI) signal characteristics, degree and pattern of enhancement, dural tail sign, ginkgo leaf sign, and intervertebral foramen widening (IFW), were reviewed. Finally, a CART model and RF model were established based on the aforementioned features to evaluate their effectiveness in differentiating between the two types of tumors. Meanwhile, we also compared the performance of the ML models to the radiologists. The receiver operating characteristic (ROC) curve, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were used to evaluate the models and clinicians' discrimination performance. Results: Our investigation reveals significant variations in ten out of 11 variables in the training group and five out of 11 variables in the test group when comparing schwannomas and meningiomas (P<0.05). Ultimately, the CART model incorporated five variables: enhancement pattern, the presence of IFW, tumor location, maximum diameter, and T2WI signal intensity (SI). The RF model combined all 11 variables. The CART model, RF model, radiologist 1, and radiologist 2 achieved an area under the curve (AUC) of 0.890, 0.956, 0.681, and 0.723 in the training group, and 0.838, 0.922, 0.580, and 0.659 in the test group, respectively. Conclusions: The RF prediction model exhibits more exceptional performance than an experienced radiologist in discriminating intraspinal schwannomas from meningiomas. The RF model seems to be better in discriminating the two tumors than the CART model.

8.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732519

RESUMO

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Isoflavonas , Síndrome Metabólica , Animais , Síndrome Metabólica/etiologia , Síndrome Metabólica/tratamento farmacológico , Isoflavonas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Ratos , Suplementos Nutricionais , Ratos Sprague-Dawley , Pressão Sanguínea/efeitos dos fármacos , Glicemia/metabolismo , Sacarose Alimentar/efeitos adversos , Rigidez Vascular/efeitos dos fármacos , Modelos Animais de Doenças , Lipídeos/sangue , Pueraria/química
9.
Toxicol Appl Pharmacol ; 486: 116952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705399

RESUMO

The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.


Assuntos
Injúria Renal Aguda , Berberina , Meios de Contraste , Modelos Animais de Doenças , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Berberina/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2489-2500, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812153

RESUMO

This study aims to reveal the molecular mechanism of Chaijin Jieyu Anshen Tablets(CJJYAS) in regulating the abnormal anterior cingulate cortex(ACC)-ventral hippocampus(vHPC) glutaminergic neural circuit to alleviate synaptic remodeling of ventral hippocampal neurons in depressed rats. Firstly, the study used chemogenetics to localize glutaminergic adeno-associated virus(AAV) into the ACC brain region of rats. The model of depressed rats was established by chronic unpredictable mild stress(CUMS) combined with independent feeding. The rats were randomly divided into control group, model group, AAV empty group, AAV group, AAV+ glucocorticoid receptors(GR) blocker group, AAV+chemokine receptor 1(CX3CR1) blocker group, and AAV+CJJYAS group. Depressive-like behaviors of rats were evaluated by open-field, forced-swimming, and Morris water maze tests, combined with an animal behavior analysis system. The morphological and structural changes of ACC and vHPC neurons in rats were observed by hematoxylin-eosin(HE) staining. Immunofluorescence and nuclear phosphoprotein(c-Fos) were used to detect glutaminergic neural circuit activation of ACC-vHPC in rats. The changes in dendrites, synaptic spines, and synaptic submicrostructure of vHPC neurons were observed by Golgi staining and transmission electron microscopy, respectively. The expressions of synaptic remodeling-related proteins N-methyl-D-asprtate receptor 2A(GRIN2A), N-methyl-D-asprtate receptor 2B(GRIN2B), Ca~(2+)/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), mitogen-activated protein kinase-activated protein kinase 2(MK2), and a ubiquitous actin-binding protein(cofilin) in vHPC glutaminergic neurons of rats were detected by immunofluorescence and Western blot, respectively. The results indicated that the activated glutaminergic AAV aggravated the depressive-like behaviors phenotype of rats in the model group and deteriorated the damage of morphology and structure of ACC and vHPC neurons and synaptic ultrastructure. However, both GR and CX3CR1 bloc-kers could reverse the abnormal changes to varying degrees, suggesting that the abnormal activation of ACC-vHPC glutaminergic neural circuit mediated by GR/CX3CR1 signals in gliocytes in the ACC brain region may be closely related to the occurrence and development of depression. Interestingly, CJJYAS significantly inhibited the activation of the ACC-vHPC glutaminergic neural circuit induced by AAV and the elevated Glu level. Furthermore, CJJYAS could also effectively reverse the aggravation of depressive-like behaviors and synaptic remodeling of vHPC neurons of rats in the model group induced by the activated AAV. Additionally, the findings suggested that the molecular mechanism of CJJYAS in improving synaptic damage of vHPC neurons might be related to the regulation of synaptic remodeling-related signals such as NR/CaMKⅡ and MK2/cofilin. In conclusion, this research confirms that CJJYAS effectively regulates the abnormal ACC-vHPC glutaminergic neural circuit and alleviates the synaptic remodeling of vHPC glutaminergic neurons in depressed rats, and the molecular mechanism might be associated with the regulation of synapse-related NR/CaMKⅡ and MK2/cofilin signaling pathways, which may be the crucial mechanism of its antidepressant effect.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Giro do Cíngulo , Hipocampo , Neurônios , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Neurônios/metabolismo , Hipocampo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Sinapses/metabolismo , Plasticidade Neuronal , Humanos
11.
J Inflamm Res ; 17: 2499-2511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699596

RESUMO

Background: Tuberculosis (TB) is one of the most infectious diseases caused by Mycobacterium tuberculosis (M. tb), and the diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) remains challenging. Methods: Gene expression files were downloaded from the GEO database to identify the differentially expressed genes (DEGs). The ssGSEA algorithm was applied to assess the immunological characteristics of patients with LTBI and TB. Weighted gene co-expression network analysis, protein-protein interaction network, and the cytoHubba plug-in of Cytoscape were used to identify the real hub genes. Finally, a diagnostic model was constructed using real hub genes and validated using a validation set. Results: Macrophages and natural killer cells were identified as important immune cells strongly associated with TB. In total, 726 mRNAs were identified as DEGs. MX1, STAT1, IFIH1, DDX58, and IRF7 were identified as real hub immune-related genes. The diagnostic model generated by the five real hub genes could distinguish active TB from healthy controls or patients with LTBI. Conclusion: Our study may provide implications for the diagnosis and drug development of M. tb infections.

12.
Clin Transl Med ; 14(6): e1724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804588

RESUMO

Copper, a trace element and vital cofactor, plays a crucial role in the maintenance of biological functions. Recent evidence has established significant correlations between copper levels, cancer development and metastasis. The strong redox-active properties of copper offer both benefits and disadvantages to cancer cells. The intestinal tract, which is primarily responsible for copper uptake and regulation, may suffer from an imbalance in copper homeostasis. Colorectal cancer (CRC) is the most prevalent primary cancer of the intestinal tract and is an aggressive malignant disease with limited therapeutic options. Current research is primarily focused on the relationship between copper and CRC. Innovative concepts, such as cuproplasia and cuproptosis, are being explored to understand copper-related cellular proliferation and death. Cuproplasia is the regulation of cell proliferation that is mediated by both enzymatic and nonenzymatic copper-modulated activities. Whereas, cuproptosis refers to cell death induced by excess copper via promoting the abnormal oligomerisation of lipoylated proteins within the tricarboxylic acid cycle, as well as by diminishing the levels of iron-sulphur cluster proteins. A comprehensive understanding of copper-related cellular proliferation and death mechanisms offers new avenues for CRC treatment. In this review, we summarise the evolving molecular mechanisms, ranging from abnormal intracellular copper concentrations to the copper-related proteins that are being discovered, and discuss the role of copper in the pathogenesis, progression and potential therapies for CRC. Understanding the relationship between copper and CRC will help provide a comprehensive theoretical foundation for innovative treatment strategies in CRC management.


Assuntos
Neoplasias Colorretais , Cobre , Humanos , Cobre/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proliferação de Células/efeitos dos fármacos
13.
J Glaucoma ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38767494

RESUMO

PURPOSE: To compare the accuracy of six intraocular lens power calculation formulas, Barrett Universal Ⅱ (BU Ⅱ), Haigis, Hoffer QST, HolladayⅠ, Kane and SRK/T, in eyes with primary angle closure disease (PACD). SETTING: Xiamen University Affiliated Xiamen Eye center, Xiamen, Fujian, China. DESIGN: Prospective case series. METHODS: Patients diagnosed with PACD and cataract and met the indication for cataract surgery were enrolled in the study. Six intraocular lens power calculation formulas were used to calculate refractive diopter. Percentage of eyes with prediction error (PE) within ±0.50D, and the median absolute prediction error (MedAE) were compared to determine the accuracy of different formulas in PACD patients. Subgroup analysis was performed according to axial length (AL). The accuracy of Barrett Universal Ⅱ was compared between PACD patients and age-related cataract patients. RESULTS: 105 patients (105 eyes) with PACD and 35 patients (35 eyes) with age-related cataract were enrolled in the study. Haigis, Kane and Barrett Universal Ⅱ formula achieved a comparable outcome and outperformed over the other three formulas in PACD patients. Subgroup analysis showed that the group with long AL has lower values of MedAE. PE was significantly positively correlated with AL and negatively correlated with relative lens position (RLP) when calculated use Barrett Universal Ⅱ and Kane. CONCLUSIONS: Haigis, Kane and Barrett Universal Ⅱ formula achieved a comparable outcome and outperformed over the other three formulas in PACD patients.

14.
Phytomedicine ; 129: 155595, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677275

RESUMO

BACKGROUND: The potential therapeutic targeting of PINK1-PARK2-mediated mitophagy against cerebral ischemia/reperfusion (CI/R) injury involves the pathophysiological processes of neurovascular unit (NVU) and is closely associated with N-methyl-D-aspartate receptors (NMDARs) commonly expressed in NVU. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-ß-D-glucoside (THSG), a compound derived from the traditional Chinese medicine Polygonum multiflorum Thunb., has demonstrated notable neuroprotective properties against CI/R injury. However, it remains unclear whether THSG exerts its protective effects through GluN2B related PINK1/ PARK2 pathway. PURPOSE: This study aims to explore the pharmacological effects of THSG on alleviating CI/R injury via the GluN2B-CaMKII-ERK1/2 pathway. METHODS: THSG neuroprotection against CI/R injury was studied in transient middle cerebral artery occlusion/reversion (tMCAO/R) model rats and in oxygen and glucose deprivation/ reoxygenation (OGD/R) induced neurons. PINK1-PARK2-mediated mitophagy involvement in the protective effect of THSG was investigated in tMCAO/R rats and OGD/R-induced neurons via THSG and 3-methyladenine (3-MA) treatment. Furthermore, the beneficial role of GluN2B in reperfusion and its contribution to the THSG effect via CaMKII-ERK1/2 and PINK1-PARK2-mediated mitophagy was explored using the GluN2B-selective antagonist Ro 25-6981 both in vivo and in vitro. Finally, the interaction between THSG and GluN2B was evaluated using molecular docking. RESULTS: THSG significantly reduced infarct volume, neurological deficits, penumbral neuron structure, and functional damage, upregulated the inhibitory apoptotic marker Bcl-2, and suppressed the increase of pro-apoptotic proteins including cleaved caspase-3 and Bax in tMCAO/R rats. THSG (1 µM) markedly improved the neuronal survival under OGD/R conditions. Furthermore, THSG promoted PINK1 and PARK2 expression and increased mitophagosome numbers and LC3-II-LC3-I ratio both in vivo and in vitro. The effects of THSG were considerably abrogated by the mitophagy inhibitor 3-MA in OGD/R-induced neurons. Inhibiting GluN2B profoundly decreased mitophagosome numbers and OGD/R-induced neuronal viability. Specifically, inhibiting GluN2B abolished the protection of THSG against CI/R injury and reversed the upregulation of PINK1-PARK2-mediated mitophagy by THSG. Inhibiting GluN2B eliminated THSG upregulation of ERK1/2 and CaMKII phosphorylation. The molecular docking analysis results demonstrated that THSG bound to GluN2B (binding energy: -5.2 ± 0.11 kcal/mol). CONCLUSIONS: This study validates the premise that THSG alleviates CI/R injury by promoting GluN2B expression, activating CaMKII and ERK1/2, and subsequently enhancing PINK1-PARK2-mediated mitophagy. This work enlightens the potential of THSG as a promising candidate for novel therapeutic strategies for treating ischemic stroke.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fármacos Neuroprotetores , Receptores de N-Metil-D-Aspartato , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucosídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687576

RESUMO

In May of 2020, November of 2021 and May of 2022, a preharvest fruit rot with white mycelia was observed inside and outside of the fruits of thick skin muskmelon (Cucumis melo L.) growing in about ten greenhouses (each greenhouse had about 320 muskmelons) with disease incidence of 70% in Ningbo, Zhejiang Province of China. In order to identify the causal agent, plant tissues from the margin of the symptomatic tissue were sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al 2019), and then placed on potato dextrose agar (PDA) plates containing streptomycin sulfate (100 µg/mL) at 25℃ for 4 days. Only Fusarium colonies were isolated from all the plant tissues. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Six fungal isolates (Fi-1~6) were obtained. The average radial mycelial growth rate of Fusarium isolate Fi-3 was 4.6 mm/day at 25℃ in the dark on PDA, and like other five isolates. The colonies are abnormal, producing lots of aerial hyphae, each isolate was white to light orange. Isolate Fi-3 produced macroconidia with 4 to 6 septa, tapered with pronounced dorsiventral curvature and measured 21 to 30 µm long 4 to 5 µm wide on Spezieller Nährstoffarmer Agar (SNA) medium at 25℃ for 10 days (Leslie and Summerell 2006), but polyphialides and chlamydospores were still not available for 30 days. The pathogen species was further identified by translation elongation factor-1 alpha (EF-1α) sequencing. The EF-1α of six isolates were sequenced, and their EF-1α sequences were 100% identical to each other, and the sequence of strain Fi-3 was deposited in GenBank with accession no. OL782040 and was also compared with sequences in the FUSARIUM-ID database (Geiser et al. 2004), which indicated that it was 100% identical to those of F. pernambucanum strain NRRL 32864 (GenBank accession GQ505613), F. pernambucanum strain LC7040 (GenBank accession MK289626), and F. pernambucanum strain LC12149 (GenBank accession MK289588) within the Fusarium incarnatum - F. equiseti species complex 17 (FIESC17). Two phylogenetic trees were established based on the TEF1-α sequences of Fi-1~6 and other Fusarium spp., Fi-1~6 was clustered with the sequences of F. pernambucanum within the FIESC17. Thus, both morphological and molecular criteria supported identification of the strain as F. pernambucanum. A pathogenicity test was conducted to verify Koch's postulates, mycelium agar plugs (6 mm in diameter) were removed from the colony margin of a 3-day-old culture of strain Fi-3, healthy melon fruits were surface-sterilized with 70% ethanol and rinsed twice with sterile-distilled water. Then, the melons were wounded using a sterile inoculating needle to stab and inoculated by a mycelium agar plug of strain Fi-3 on the wound sites. 5 fruits were inoculated in each treatment, and a mycelium-free PDA plug was used as a negative control, repeated 3 times, at 25℃ with high relative humidity for 10 days. The results show disease symptoms similar to those naturally infected fruits on all inoculated melon fruits. The fungus re-isolated from the diseased fruits, showed the same colony morphology as the original isolate. Koch's postulates were repeated three times with the same results. Strain Fi-3 inoculated fruits without wounding remained healthy. To our knowledge, this is the first report of fruit rot of melon caused by F. pernambucanum in China.

16.
Bioorg Med Chem Lett ; 105: 129726, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580135

RESUMO

The enhancer of zeste homologue 2 (EZH2) is the core catalytic subunit of polycomb repressive complex 2, which catalyzes lysine 27 methylation of histone H3. Herein, a series of quinolinone derivatives were designed and synthesized based on the structure of Tazemetostat as the lead compound. Compound 9l (EZH2WT IC50 = 0.94 nM) showed stronger antiproliferative activity in HeLa cells than the lead compound. Moreover, compound 9e (EZH2WT IC50 = 1.01 nM) significantly inhibited the proliferation and induced apoptosis in A549 cells.


Assuntos
Proliferação de Células , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Quinolonas , Humanos , Quinolonas/farmacologia , Quinolonas/síntese química , Quinolonas/química , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células A549 , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral
17.
Structure ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38677289

RESUMO

Neurotransmitter ligands electrically excite neurons by activating ionotropic glutamate receptor (iGluR) ion channels. Knowledge of the iGluR amino acid residues that dominate ligand-induced activation would enable the prediction of function from sequence. We therefore explored the molecular determinants of activity in rat N-methyl-D-aspartate (NMDA)-type iGluRs (NMDA receptors), complex heteromeric iGluRs comprising two glycine-binding GluN1 and two glutamate-binding GluN2 subunits, using amino acid sequence analysis, mutagenesis, and electrophysiology. We find that a broadly conserved aspartate residue controls both ligand potency and channel activity, to the extent that certain substitutions at this position bypass the need for ligand binding in GluN1 subunits, generating NMDA receptors activated solely by glutamate. Furthermore, we identify a homomeric iGluR from the placozoan Trichoplax adhaerens that has utilized native mutations of this crucial residue to evolve into a leak channel that is inhibited by neurotransmitter binding, pointing to a dominant role of this residue throughout the iGluR superfamily.

18.
J Affect Disord ; 356: 586-596, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657764

RESUMO

BACKGROUND: Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS: Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS: DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION: Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS: Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.


Assuntos
Depressão , Diabetes Mellitus Experimental , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plasticidade Neuronal , Pramipexol , Animais , Pramipexol/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Inflamassomos/efeitos dos fármacos , Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos Sprague-Dawley , Doenças Neuroinflamatórias/tratamento farmacológico , Agonistas de Dopamina/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças
19.
JAMA Netw Open ; 7(3): e241285, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38451524

RESUMO

Importance: Neoadjuvant therapy combining programmed cell death 1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors with platinum-based chemotherapy has demonstrated significant improvement in pathologic response and survival rates among patients with resectable non-small cell lung cancer (NSCLC). However, it remains controversial whether PD-1 blockade therapy given before and after surgery (neoadjuvant-adjuvant treatment) is associated with better outcomes than when given only before surgery (neoadjuvant-only treatment). Objective: To compare the efficacy and safety associated with neoadjuvant-adjuvant anti-PD-1 and anti-PD-L1 therapy with neoadjuvant-only anti-PD-1 and anti-PD-L1 therapy for patients with resectable NSCLC. Data Sources: A systematic search was conducted across databases including PubMed, Embase, and the Cochrane Library, as well as major oncology conferences, through July 31, 2023. Study Selection: Randomized clinical trials comparing neoadjuvant-adjuvant or neoadjuvant-only PD-1 and PD-L1 inhibitor therapy vs chemotherapy alone for patients with resectable NSCLC were selected. Data Extraction and Synthesis: Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, 2 authors independently extracted data. Hazard ratios (HRs) and 95% CIs for event-free survival (EFS) and overall survival (OS) were extracted and then pooled through the generic inverse-variance methods. Relative risks (RRs) for treatment-related adverse events (TRAEs) were derived via the Mantel-Haenszel method. Using chemotherapy as a common comparator, indirect comparisons between neoadjuvant-adjuvant immunotherapy and neoadjuvant-only immunotherapy were conducted using frequentist methods. A random or fixed model was used based on intertrial heterogeneity identified through the Cochran Q test. Main Outcomes and Measures: The primary outcome was EFS, with secondary outcomes including OS and TRAEs. Results: The study encompassed 4 trials of neoadjuvant-adjuvant immunotherapy and 1 trial of neoadjuvant-only immunotherapy, involving 2385 patients. Direct meta-analysis revealed significant improvements in EFS for both neoadjuvant-adjuvant and neoadjuvant-only immunotherapy compared with chemotherapy alone. In indirect meta-analysis, the addition of adjuvant immunotherapy to neoadjuvant immunotherapy was not associated with improved EFS (HR, 0.90; 95% CI, 0.63-1.30; P = .59) or OS (HR, 1.18; 95% CI, 0.73-1.90; P = .51) compared with neoadjuvant-only immunotherapy. Moreover, the incidence of any grade of TRAEs significantly increased with the addition of adjuvant immunotherapy (RR, 1.08; 95% CI, 1.00-1.17; P = .04). Conclusions and Relevance: This meta-analysis suggests that adding PD-1 or PD-L1 inhibitors in the adjuvant phase to neoadjuvant treatment with PD-1 or PD-L1 inhibitors and chemotherapy may not improve survival outcomes for patients with resectable NSCLC and may be associated with increased adverse events. Future validation of these findings is warranted through head-to-head randomized clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/tratamento farmacológico , Adjuvantes Imunológicos
20.
Food Res Int ; 182: 114179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519191

RESUMO

Co-culture fermentation with yeast and lactic acid bacteria (LAB) exhibits advantages in improving the bioactivity and flavor of wheat bran compared to single-culture fermentation, showing application potentials in bran-containing Chinese steamed bread (CSB). To explore the effects of combination of yeast and different LAB on the bioactivity and flavor of fermented wheat bran, this study analyzed the physicochemical properties, phytate degradation capacity, antioxidant activities, and aroma profile of wheat bran treated with co-culture fermentation by Saccharomycopsis fibuligera and eight different species of LAB. Further, the phenolic acid composition, antioxidant activities, texture properties, aroma profile, and sensory quality of CSB containing fermented wheat bran were evaluated. The results revealed that co-culture fermentation brought about three types of volatile characteristics for wheat bran, including ester-feature, alcohol and acid-feature, and phenol-feature, and the representative strain combinations for these characteristics were S. fibuligera with Limosilactobacillus fermentum, Pediococcus pentosaceus, and Latilactobacillus curvatus, respectively. Co-culture fermentation by S. fibuligera and L. fermentum for 36 h promoted acidification with a phytate degradation rate reaching 51.70 %, and improved the production of volatile ethyl esters with a relative content of 58.47 % in wheat bran. Wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus for 36 h had high relative content of 4-ethylguaiacol at 52.81 %, and exhibited strong antioxidant activities, with ABTS•+ and DPPH• scavenging rates at 65.87 % and 69.41 %, respectively, and ferric reducing antioxidant power (FRAP) at 37.91 µmol/g. In addition, CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. fermentum showed a large specific volume, soft texture, and pleasant aroma, and received high sensory scores. CSB containing wheat bran treated with co-culture fermentation by S. fibuligera and L. curvatus, with high contents of 4-ethylguaiacol, 4-vinylguaiacol, ferulic acid, vanillin, syringaldehyde, and protocatechualdehyde, demonstrated strong antioxidant activities. This study is beneficial to the comprehensive utilization of wheat bran resources and provides novel insights into the enhancement of functions and quality for CSB.


Assuntos
Guaiacol/análogos & derivados , Lactobacillales , Saccharomycopsis , Lactobacillales/metabolismo , Pão/análise , Fibras na Dieta/análise , Odorantes , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Fítico , Técnicas de Cocultura , Fermentação , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...