Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956168

RESUMO

The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long noncoding RNA (lncRNA) has key roles in regulating transcription, splicing, tumorigenesis, etc. Its maturation and stabilization require precise processing by RNase P, which simultaneously initiates the biogenesis of a 3' cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA). mascRNA was proposed to fold into a transfer RNA (tRNA)-like secondary structure but lacks eight conserved linking residues required by the canonical tRNA fold. Here we report crystal structures of human mascRNA before and after processing, which reveal an ultracompact, quasi-tRNA-like structure. Despite lacking all linker residues, mascRNA faithfully recreates the characteristic 'elbow' feature of tRNAs to recruit RNase P and ElaC homolog protein 2 (ELAC2) for processing, which exhibit distinct substrate specificities. Rotation and repositioning of the D-stem and anticodon regions preclude mascRNA from aminoacylation, avoiding interference with translation. Therefore, a class of metazoan lncRNA loci uses a previously unrecognized, unusually streamlined quasi-tRNA architecture to recruit select tRNA-processing enzymes while excluding others to drive bespoke RNA biogenesis, processing and maturation.

2.
Nat Commun ; 14(1): 5438, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673863

RESUMO

T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.


Assuntos
Dobramento de RNA , Riboswitch , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA , Riboswitch/genética , Aminoácidos , Chaperonas Moleculares
3.
Nucleic Acids Res ; 51(18): 9952-9960, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37534568

RESUMO

RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.

4.
Res Sq ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37425706

RESUMO

The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.

5.
Commun Biol ; 6(1): 712, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433832

RESUMO

Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.


Assuntos
Centríolos , Centrossomo , Proteínas Serina-Treonina Quinases , Humanos , Ciclo Celular , Peso Molecular , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo
7.
Structure ; 31(7): 848-859.e3, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253356

RESUMO

The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.


Assuntos
Riboswitch , Tiamina Pirofosfato/química , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligantes
8.
Nat Commun ; 14(1): 714, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759615

RESUMO

RNA flexibility is reflected in its heterogeneous conformation. Through direct visualization using atomic force microscopy (AFM) and the adenosylcobalamin riboswitch aptamer domain as an example, we show that a single RNA sequence folds into conformationally and architecturally heterogeneous structures under near-physiological solution conditions. Recapitulated 3D topological structures from AFM molecular surfaces reveal that all conformers share the same secondary structural elements. Only a population-weighted cohort, not any single conformer, including the crystal structure, can account for the ensemble behaviors observed by small-angle X-ray scattering (SAXS). All conformers except one are functionally active in terms of ligand binding. Our findings provide direct visual evidence that the sequence-structure relationship of RNA under physiologically relevant solution conditions is more complex than the one-to-one relationship for well-structured proteins. The direct visualization of conformational and architectural ensembles at the single-molecule level in solution may suggest new approaches to RNA structural analyses.


Assuntos
Proteínas , RNA , Humanos , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Conformação de Ácido Nucleico
9.
Methods Mol Biol ; 2568: 165-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227568

RESUMO

RNA-level regulation by riboswitches relies on the specific binding of small metabolites to the aptamer domain to trigger substantial conformational changes that affect transcription or translation. Although several biophysical methods have been employed to study such RNAs, the utility of any one single method is limited. Hybrid approaches, therefore, are essential to better characterize these intrinsically dynamic molecules and elucidate their regulatory mechanisms driven by ligand-induced conformational changes. This chapter outlines procedures for biochemical and biophysical characterization of RNA that employs a combination of solution-based methods: isothermal titration calorimetry (ITC), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Collectively, these tools provide a semi-quantitative assessment of the thermodynamics associated with ligand binding and subsequent conformational changes.


Assuntos
Riboswitch , Ligantes , Conformação de Ácido Nucleico , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Methods Mol Biol ; 2568: 243-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227573

RESUMO

Time-resolved structure determination of macromolecular conformations and ligand-bound intermediates is extremely challenging, particularly for RNA. With rapid technological advances in both microfluidic liquid injection and X-ray free electron lasers (XFEL), a new frontier has emerged in time-resolved crystallography whereby crystals can be mixed with ligand and then probed with X-rays (mix-and-inject) in real time and at room temperature. This chapter outlines the basic setup and procedures for mix-and-inject experiments for recording time-resolved crystallographic data of riboswitch RNA reaction states using serial femtosecond crystallography (SFX) and an XFEL.


Assuntos
Riboswitch , Cristalografia/métodos , Cristalografia por Raios X , Lasers , Ligantes , RNA
11.
Methods Enzymol ; 677: 479-529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410961

RESUMO

Structures of well-folded RNA molecules can be determined with atomic resolution by either X-ray crystallography, cryo-EM, or NMR spectroscopy, but those of conformationally-flexible RNAs often are difficult to study with these methods. However, flexible RNAs have biological relevance and likely represent the majority of the RNA conformational space. Due to the high electron density of the phosphate-sugar backbone, RNA is very sensitive to small-angle X-ray scattering (SAXS), and SAXS data can be recorded with sub-µM concentrations and under near-physiological solution conditions without the need for labeling. For these reasons, SAXS has significant advantages over other techniques for obtaining global structural information of flexible RNAs in the form of molecular envelopes or low-resolution topological structural models. The SAXS-derived information is extremely valuable for bridging secondary structure data, often determined by other techniques, with a three-dimensional structure description. In this chapter, we present a detailed account of the principle, algorithms, and experimental and computational protocols for topological structure determination of RNA molecules in solution. To illustrate the applications of the methodology, we provide several case studies that cover a broad spectrum of the RNA conformational landscape.


Assuntos
RNA , Espalhamento a Baixo Ângulo , RNA/química , Difração de Raios X , Conformação de Ácido Nucleico , Cristalografia por Raios X
12.
Front Mol Biosci ; 9: 964595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052167

RESUMO

Crystallographic observation of structural changes in real time requires that those changes be uniform both spatially and temporally. A primary challenge with time-resolved ligand-mixing diffraction experiments is asynchrony caused by variable factors, such as efficiency of mixing, rate of diffusion, crystal size, and subsequently, conformational heterogeneity. One method of minimizing such variability is use of a photolabile caged ligand, which can fully saturate the crystal environment (spatially), and whose photoactivation can rapidly (temporally) trigger the reaction in a controlled manner. Our recently published results on a ligand-mixing experiment using time-resolved X-ray crystallography (TRX) with an X-ray free electron laser (XFEL) demonstrated that large conformational changes upon ligand binding resulted in a solid-to-solid phase transition (SSPT), while maintaining Bragg diffraction. Here we investigate this SSPT by polarized video microscopy (PVM) after light-triggered release of a photo-caged adenine (pcADE). In general, the mean transition times and transition widths of the SSPT were less dependent on crystal size than what was observed in previous PVM studies with direct ADE mixing. Instead, the photo-induced transition appears to be heavily influenced by the equilibrium between caged and uncaged ADE due to relatively low sample exposure and uncaging efficiency. Nevertheless, we successfully demonstrate a method for the characterization of phase transitions in RNA crystals that are inducible with a photocaged ligand. The transition data for three crystals of different sizes were then applied to kinetic analysis by fitting to the known four-state model associated with ligand-induced conformational changes, revealing an apparent concentration of uncaged ADE in crystal of 0.43-0.46 mM. These results provide further insight into approaches to study time-resolved ligand-induced conformational changes in crystals, and in particular, highlight the feasibility of triggering phase transitions using a light-inducible system. Developing such approaches may be paramount for the rapidly emerging field of time-resolved crystallography.

13.
Nat Commun ; 13(1): 3177, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676274

RESUMO

The assembly and function of the yeast general transcription factor TFIID complex requires specific contacts between its Taf14 and Taf2 subunits, however, the mechanism underlying these contacts remains unclear. Here, we determined the molecular and structural basis by which the YEATS and ET domains of Taf14 bind to the C-terminal tail of Taf2 and identified a unique DNA-binding activity of the linker region connecting the two domains. We show that in the absence of ligands the linker region of Taf14 is occluded by the surrounding domains, and therefore the DNA binding function of Taf14 is autoinhibited. Binding of Taf2 promotes a conformational rearrangement in Taf14, resulting in a release of the linker for the engagement with DNA and the nucleosome. Genetic in vivo data indicate that the association of Taf14 with both Taf2 and DNA is essential for transcriptional regulation. Our findings provide a basis for deciphering the role of individual TFIID subunits in mediating gene transcription.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , DNA/metabolismo , Regulação da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo
14.
Protein Sci ; 31(5): e4307, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481647

RESUMO

HIV-1 reverse transcriptase (RT) is a heterodimer comprised p66 and p51 subunits (p66/p51). Several single amino acid substitutions in RT, including L289K, decrease p66/p51 dimer affinity, and reduce enzymatic functioning. Here, small-angle X-ray scattering (SAXS) with proton paramagnetic relaxation enhancement (PRE), 19 F site-specific NMR, and size exclusion chromatography (SEC) were performed for the p66 monomer with the L289K mutation, p66L289K . NMR and SAXS experiments clearly elucidated that the thumb and RNH domains in the monomer do not rigidly interact with each other but are spatially close to the RNH domain. Based on this structural model of the monomer, p66L289K and p51 were predicted to form a heterodimer while p66 and p51L289K not. We tested this hypothesis by SEC analysis of p66 and p51 containing L289K in different combinations and clearly demonstrated that L289K substitution in the p51 subunit, but not in the p66 subunit, reduces p66/p51 formation. Based on the derived monomer model and the importance of the inter-subunit RNH-thumb domain interaction in p66/p51, validated by SEC, the mechanism of p66 homodimer formation was discussed.


Assuntos
Transcriptase Reversa do HIV , Mutação de Sentido Incorreto , Transcriptase Reversa do HIV/química , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Nucleic Acids Res ; 50(4): 2287-2301, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137150

RESUMO

Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA-RNA contacts that connect the 5' and 3' regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3'X, located at the 3'-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic 'L' shape in solution, whereas the 5BSL3.2-3'X distal complex forms a highly unusual 'Y'-shaped kissing junction that blocks the dimer linkage sequence of domain 3'X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3'X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.


Assuntos
Flaviviridae , Hepacivirus , Regiões 3' não Traduzidas , Genoma Viral , Hepacivirus/genética , Modelos Estruturais , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Replicação Viral/genética
16.
Struct Dyn ; 8(3): 034301, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34235229

RESUMO

Solid-solid phase transitions (SSPTs) have been widely observed in crystals of organic or inorganic small-molecules. Although SSPTs in macromolecular crystals have been reported, the majority involve local atomic changes, such as those induced by changes in hydration. SSPTs driven by large conformational changes, however, can be more difficult to characterize since they often significantly disrupt lattice packing interactions. Such drastic changes make the cooperativity of molecular motion at the atomic level less easily achieved and more dependent on intrinsic properties of the crystal that define lattice order. Here, we investigate the effect of crystal size on the uniformity of SSPT in thin plate-like crystals of the adenine riboswitch aptamer RNA (riboA) by monitoring changes in crystal birefringence upon the diffusion of adenine ligand. The birefringence intensity is directly related to molecular order and the concurrent changes to polarizability of molecules that results from structural changes throughout the phase transition. The riboA crystals were loosely grouped into three categories (small, medium, and large) based on the surface area of the crystal plates. The time width of transition increased as a function of crystal size, ranging from ∼13 s for small crystals to ∼40 s for the largest crystal. Whereas the transitions in small crystals (<10 µm2) were mostly uniform throughout, the medium and large crystals exhibited large variations in the time and width of the transition peak depending on the region of the crystal being analyzed. Our study provides insight into the spatiotemporal behavior of phase transitions in crystals of biological molecules and is of general interest to time-resolved crystallographic studies, where the kinetics of conformational changes may be governed by the kinetics of an associated SSPT.

17.
IUCrJ ; 8(Pt 4): 655-664, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258013

RESUMO

Solid-solid phase transitions (SSPTs) occur between distinguishable crystalline forms. Because of their importance in application and theory in materials science and condensed-matter physics, SSPTs have been studied most extensively in metallic alloys, inorganic salts and small organic molecular crystals, but much less so in biomacromolecular crystals. In general, the mechanisms of SSPTs at the atomic and molecular levels are not well understood. Here, the ordered molecular rearrangements in biomacromolecular crystals of the adenine riboswitch aptamer are described using real-time serial crystallography and solution atomic force microscopy. Large, ligand-induced conformational changes drive the initial phase transition from the apo unit cell (AUC) to the trans unit cell 1 (TUC1). During this transition, coaxial stacking of P1 duplexes becomes the dominant packing interface, whereas P2-P2 interactions are almost completely disrupted, resulting in 'floating' layers of molecules. The coupling points in TUC1 and their local conformational flexibility allow the molecules to reorganize to achieve the more densely packed and energetically favorable bound unit cell (BUC). This study thus reveals the interplay between the conformational changes and the crystal phases - the underlying mechanism that drives the phase transition. Using polarized video microscopy to monitor SSPTs in small crystals at high ligand concentration, the time window during which the major conformational changes take place was identified, and the in crystallo kinetics have been simulated. Together, these results provide the spatiotemporal information necessary for informing time-resolved crystallography experiments. Moreover, this study illustrates a practical approach to characterization of SSPTs in transparent crystals.

18.
J Appl Crystallogr ; 54(Pt 3): 787-796, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34194289

RESUMO

Solid-solid phase transitions (SSPTs) are widespread naturally occurring phenomena. Understanding the molecular mechanisms and kinetics of SSPTs in various crystalline materials, however, has been challenging due to technical limitations. In particular, SSPTs in biomacromolecular crystals, which may involve large-scale changes and particularly complex sets of interactions, are largely unexplored, yet may have important implications for time-resolved crystallography and for developing synthetic biomaterials. The adenine riboswitch (riboA) is an RNA control element that uses ligand-induced conformational changes to regulate gene expression. Crystals of riboA, upon the addition of a ligand, undergo an SSPT from monoclinic to triclinic to orthorhombic. Here, solution atomic force microscopy (AFM) and polarized video microscopy (PVM) are used to characterize the multiple transition states throughout the SSPT in both the forward and the reverse directions. This contribution describes detailed protocols for growing crystals directly on mica or glass surfaces for AFM and PVM characterization, respectively, as well as methods for image processing and phase-transition kinetics analysis.

19.
Nucleic Acids Res ; 49(10): 5967-5984, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023896

RESUMO

Quorum sensing gene expression in vibrios is regulated by the LuxR/HapR family of transcriptional factors, which includes Vibrio vulnificus SmcR. The consensus binding site of Vibrio LuxR/HapR/SmcR proteins is palindromic but highly degenerate with sequence variations at each promoter. To examine the mechanism by which SmcR recognizes diverse DNA sites, we generated SmcR separation-of-function mutants that either repress or activate transcription but not both. SmcR N55I is restricted in recognition of single base-pair variations in DNA binding site sequences and thus is defective at transcription activation but retains interaction with RNA polymerase (RNAP) alpha. SmcR S76A, L139R and N142D substitutions disrupt the interaction with RNAP alpha but retain functional DNA binding activity. X-ray crystallography and small angle X-ray scattering data show that the SmcR DNA binding domain exists in two conformations (wide and narrow), and the protein complex forms a mixture of dimers and tetramers in solution. The three RNAP interaction-deficient variants also have two DNA binding domain conformations, whereas SmcR N55I exhibits only the wide conformation. These data support a model in which two mechanisms drive SmcR transcriptional activation: interaction with RNAP and a multi-conformational DNA binding domain that permits recognition of variable DNA sites.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/química , Transativadores/química , Transativadores/genética , Fatores de Transcrição/química , Vibrio vulnificus/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Dimerização , Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Conformação Proteica , Percepção de Quorum/genética , Proteínas Recombinantes , Proteínas Repressoras/química , Proteínas Repressoras/genética , Espalhamento a Baixo Ângulo , Fatores de Transcrição/genética , Vibrio vulnificus/genética
20.
J Phys Chem B ; 125(10): 2589-2596, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683130

RESUMO

Cobalamin riboswitch is a cis-regulatory element widely found in the 5'-UTRs of the vitamin B12-associated genes in bacteria, resulting in modulation and production of a particular protein. Thermoanaerobacter tengcongensis (Tte) AdoCbl riboswitches are the largest of the known riboswitches with 210 nucleotides, partially due to its long peripheral P6-extension, which enable high affinity of AdoCbl. Two structural elements, T-loop/T-looplike motif and kissing loop are key to the global folding of the RNA. While the structure of the TteAdoCbl riboswitch complex is known, we still do not understand the structure and conformation before AdoCbl ligand recognition. In order to delineate the conformational changes and the stabilities of long-range interactions, we have performed extensive all-atom replica-exchange molecular dynamics simulations of the TteAdoCbl riboswitch with a total simulation time of 2296 ns. We found that both the T-loop/T-looplike motif and kissing loop are very stable with ligand binding. The gating conformation changes of P6-extension allow the ligand to bind to the preorganized kissing loop binding pocket. The T-loop/T-looplike motif has much more hydrogen bonds than observed in TteAdoCbl riboswitch complex crystal structure, indicating an allosteric response of the T-loop/T-looplike motif. Our study demonstrated that the conformational ensemble of TteAdoCbl riboswitch provides stable structural elements for conformation selection and population shift in cobalamin recognition.


Assuntos
Riboswitch , Firmicutes , Ligantes , Conformação de Ácido Nucleico , Dobramento de RNA , Vitamina B 12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...