Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38973539

RESUMO

BACKGROUND AND AIMS: Observational studies have shown bidirectional associations between psychological disorders (e.g. depression and anxiety) and functional gastrointestinal disorders. However, whether the relationships are causal is uncertain. Here, we used a bidirectional two-sample Mendelian randomization method to investigate the association between psychological disorders and functional gastrointestinal disorders (FGIDs). METHODS: We obtained genome-wide association study summary statistics for two common psychological disorders: depression (170 756 cases) and anxiety (31 977 cases), as well as for three common FGIDs: functional dyspepsia with 6666 cases, constipation with 26 919 cases, and irritable bowel syndrome (IBS) with 7053 cases. These summary statistics were retrieved from several publicly available genome-wide association study databases. The inverse variance weighted method was used as the main Mendelian randomization method. RESULTS: Inverse variance weighted Mendelian randomization analyses showed statistically significant associations between genetically predicted depression and risk of functional dyspepsia [odds ratio (OR): 1.40, 95% confidence interval (CI): 1.08-1.82], constipation (OR: 1.28, 95% CI: 1.13-1.44), and IBS (OR: 1.51, 95% CI: 1.37-1.67). Genetically predicted anxiety was associated with a higher risk of IBS (OR: 1.13, 95% CI: 1.10-1.17) instead of functional dyspepsia and constipation. In addition, genetically predicted IBS instead of functional dyspepsia and constipation was associated with a higher risk of depression (OR: 1.33, 95% CI: 1.12-1.57) and anxiety (OR: 2.05, 95% CI: 1.05-4.03). CONCLUSION: Depression is a causal risk factor for three common FGIDs. A bidirectional causal relationship between IBS and anxiety or depression was also identified.

2.
Chem Soc Rev ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005165

RESUMO

As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.

3.
Curr Opin Chem Biol ; 81: 102499, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996568

RESUMO

This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step SCER cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This SCER cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for in vivo mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.

4.
Clin Interv Aging ; 19: 1029-1039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863479

RESUMO

Background: The respiratory rehabilitation technique is a crucial component of early cardiac recovery in geriatric patients with acute myocardial infarction (AMI). This study primarily investigated the effectiveness of a novel respiratory rehabilitation technique, metronomic breathing (MB), on geriatric patients after percutaneous coronary intervention for AMI and compliance with home-based rehabilitation compared to traditional respiratory rehabilitation. Methods: From June 2022 to March 2023, 75 acute myocardial infarction (AMI) patients admitted to the Shanghai Tenth People's Hospital Cardiovascular Department were consecutively enrolled. Ultimately, 46 patients completed the follow-up in this study-26 in the MB group and 20 in the control group-who underwent the novel MB technique and conventional abdominal breathing training. The primary endpoint of the study was left ventricular function measured by noninvasive hemodynamics three months after discharge. The secondary endpoints were compliance and quality of life after three months of home rehabilitation. Results: After the intervention, several cardiac functional parameters (SV, SVI, CO, CI, LCW, and LCWI), myocardial contractility parameters (VI), and systemic vascular resistance parameters (SVR and SVRI) were significantly greater in the MB group than in the preintervention group (P < 0.05). Furthermore, post-treatment, the MB group exhibited greater SV, SVI, CO, CI, and VI; lower SVR, SVRI, and SBP; and a lower readmission rate three months later than did the control group. The SF-36 scores after three months of MB intervention, PE, BP, GH, VT, SF, RE, and MH, were all significantly greater than those before treatment (P < 0.05). Moreover, the MB group displayed greater compliance with home-based cardiac rehabilitation (P < 0.05). Conclusion: Compared to conventional respiratory rehabilitation training methods, short-term metronomic respiratory therapy is more effective for reducing systemic vascular resistance, enhancing left ventricular ejection function, enhancing quality of life, and increasing home-based rehabilitation compliance in geriatric patients following AMI with PCI.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Qualidade de Vida , Humanos , Masculino , Feminino , Projetos Piloto , Idoso , Infarto do Miocárdio/reabilitação , Função Ventricular Esquerda , Exercícios Respiratórios/métodos , Pessoa de Meia-Idade , China , Reabilitação Cardíaca/métodos , Resultado do Tratamento , Idoso de 80 Anos ou mais , Hemodinâmica , Cooperação do Paciente
5.
Front Public Health ; 12: 1357715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903571

RESUMO

Introduction: To enhance the precision of evaluating the impact of urban environments on resident health, this study introduces a novel fuzzy intelligent computing model designed to address health risk concerns using multi-media environmental monitoring data. Methods: Three cities were selected for the study: Beijing (B City), Kunming (K City), and Wuxi (W City), representing high, low, and moderate pollution levels, respectively. The study employs a Fuzzy Inference System (FIS) as the chosen fuzzy intelligent computing model, synthesizing multi-media environmental monitoring data for the purpose of urban health risk assessment. Results: (1) The model reliably estimates health risks across diverse cities and environmental conditions. (2) There is a positive correlation between PM2.5 concentrations and health risks, though the impact of noise levels varies by city. In cities B, K, and W, the respective correlation coefficients are 0.65, 0.55, and 0.7. (3) The Root Mean Square Error (RMSE) values for cities B, K, and W, are 0.0132, 0.0125, and 0.0118, respectively, indicating that the model has high accuracy. The R2 values for the three cities are 0.8963, 0.9127, and 0.9254, respectively, demonstrating the model's high explanatory power. The residual values for the three cities are 0.0087, 0.0075, and 0.0069, respectively, indicating small residuals and demonstrating robustness and adaptability. (4) The model's p-values for the Indoor Air Quality Index (IAQI), Thermal Comfort Index (TCI), and Noise Pollution Index (NPI) all satisfy p < 0.05 for the three cities, affirming the model's credibility in estimating health risks under varied urban environments. Discussion: These results showcase the model's ability to adapt to diverse geographical conditions and aid in the accurate assessment of existing risks in urban settings. This study significantly advances environmental health risk assessment by integrating multidimensional data, enhancing the formulation of comprehensive environmental protection and health management strategies, and providing scientific support for sustainable urban planning.


Assuntos
Cidades , Monitoramento Ambiental , Lógica Fuzzy , Humanos , Medição de Risco/métodos , Monitoramento Ambiental/métodos , China , Material Particulado/análise , Poluição do Ar/análise , Modelos Teóricos
6.
Langmuir ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913990

RESUMO

Waste polystyrene contributes considerably to environmental pollution due to its persistent nature, prompting a widespread consensus on the urgent need for viable recycling solutions. Owing to the aromatic groups structure of polystyrene, hyper-cross-linked polymers can be synthesized through the Friedel-Crafts cross-linking reaction using Lewis acids as catalysts. In addition, hyper-cross-linked polystyrene and its carbonaceous counterparts can be used in several important applications, which helps in their efficient recycling. This review systematically explores methods for preparing multifunctional hyper-cross-linked polymers from waste polystyrene and their applications in sustainable recycling. We have comprehensively outlined various synthetic approaches for these polymers and investigated their physical and chemical properties. These multifunctional polymers not only exhibit structural flexibility but also demonstrate diversity in performance, making them suitable for various applications. Through a systematic examination of synthetic methods, we showcase the cutting-edge positions of these materials in the field of hyper-cross-linked polymers. Additionally, we provide in-depth insights into the potential applications of these hyper-cross-linked polymers in intentional recycling, highlighting their important contributions to environmental protection and sustainable development. This research provides valuable references to the fields of sustainable materials science and waste management, encouraging further exploration of innovative approaches for the utilization of discarded polystyrene.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38900623

RESUMO

Conventional approaches to dietary assessment are primarily grounded in self-reporting methods or structured interviews conducted under the supervision of dietitians. These methods, however, are often subjective, potentially inaccurate, and time-intensive. Although artificial intelligence (AI)-based solutions have been devised to automate the dietary assessment process, prior AI methodologies tackle dietary assessment in a fragmented landscape (e.g., merely recognizing food types or estimating portion size), and encounter challenges in their ability to generalize across a diverse range of food categories, dietary behaviors, and cultural contexts. Recently, the emergence of multimodal foundation models, such as GPT-4V, has exhibited transformative potential across a wide range of tasks (e.g., scene understanding and image captioning) in various research domains. These models have demonstrated remarkable generalist intelligence and accuracy, owing to their large-scale pre-training on broad datasets and substantially scaled model size. In this study, we explore the application of GPT-4V powering multimodal ChatGPT for dietary assessment, along with prompt engineering and passive monitoring techniques. We evaluated the proposed pipeline using a self-collected, semi free-living dietary intake dataset comprising 16 real-life eating episodes, captured through wearable cameras. Our findings reveal that GPT-4V excels in food detection under challenging conditions without any fine-tuning or adaptation using food-specific datasets. By guiding the model with specific language prompts (e.g., African cuisine), it shifts from recognizing common staples like rice and bread to accurately identifying regional dishes like banku and ugali. Another GPT-4V's standout feature is its contextual awareness. GPT-4V can leverage surrounding objects as scale references to deduce the portion sizes of food items, further facilitating the process of dietary assessment.

8.
Comput Biol Med ; 178: 108736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878402

RESUMO

Accurate segmentation of retinal vessels in fundus images is of great importance for the diagnosis of numerous ocular diseases. However, due to the complex characteristics of fundus images, such as various lesions, image noise and complex background, the pixel features of some vessels have significant differences, which makes it easy for the segmentation networks to misjudge these vessels as noise, thus affecting the accuracy of the overall segmentation. Therefore, accurately segment retinal vessels in complex situations is still a great challenge. To address the problem, a partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation is proposed. The core idea of the proposed network is first to use the partial class activation mapping guided graph convolutional network to eliminate the differences of local vessels and generate feature maps with global consistency, and subsequently these feature maps are further refined by segmentation network U-Net to achieve better segmentation results. Specifically, a new neural network block, called EdgeConv, is stacked multiple layers to form a graph convolutional network to realize the transfer an update of information from local to global, so as gradually enhance the feature consistency of graph nodes. Simultaneously, in an effort to suppress the noise information that may be transferred in graph convolution and thus reduce adverse effects of noise on segmentation results, the partial class activation mapping is introduced. The partial class activation mapping can guide the information transmission between graph nodes and effectively activate vessel feature through classification labels, thereby improving the accuracy of segmentation. The performance of the proposed method is validated on four different fundus image datasets. Compared with existing state-of-the-art methods, the proposed method can improve the integrity of vessel to a certain extent when the pixel features of local vessels are significantly different, caused by objective factors such as inappropriate illumination and exudates. Moreover, the proposed method shows robustness when segmenting complex retinal vessels.


Assuntos
Redes Neurais de Computação , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos
9.
Adv Mater ; : e2405682, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877752

RESUMO

Assembling ultrathin nanosheets into layered structure represents one promising way to fabricate high-performance nanocomposites. However, how to minimize the internal defects of the layered assemblies to fully exploit the intrinsic mechanical superiority of nanosheets remains challenging. Here, a dual-scale spatially confined strategy for the co-assembly of ultrathin nanosheets with different aspect ratios into a near-perfect layered structure is developed. Large-aspect-ratio (LAR) nanosheets are aligned due to the microscale confined space of a flat microfluidic channel, small-aspect-ratio (SAR) nanosheets are aligned due to the nanoscale confined space between adjacent LAR nanosheets. During this co-assembly process, SAR nanosheets can flatten LAR nanosheets, thus reducing wrinkles and pores of the assemblies. Benefiting from the precise alignment (orientation degree of 90.74%) of different-sized nanosheets, efficient stress transfer between nanosheets and interlayer matrix is achieved, resulting in layered nanocomposites with multiscale mechanical enhancement and superior fatigue durability (100 000 bending cycles). The proposed co-assembly strategy can be used to orderly integrate high-quality nanosheets with different sizes or diverse functions toward high-performance or multifunctional nanocomposites.

10.
Pest Manag Sci ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940437

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) is a Gram-positive bacterium that produces various insecticidal proteins used to control insect pests. Spodoptera frugiperda is a global insect pest which causes serious damage to crops, but bio-insecticides currently available to control this pest have limited activity and so new ones are always being sought. In this study we have tested the hypothesis that a biomarker for strain toxicity could be found that would greatly facilitate the identification of new potential products. RESULTS: Using genomic sequencing data we constructed a linkage network of insecticidal genes from 1957 Bt genomes and found that four gene families, namely cry1A, cry1I, cry2A and vip3A, showed strong linkage. For 95 strains isolated from soil samples we assayed them for toxicity towards S. frugiperda and for the presence of the above gene families. All of the strains that showed high toxicity also contained a member of the vip3A gene family. Two of them were more toxic than a commercially available strain and genomic sequencing identified a number of potentially novel toxin-encoding genes. CONCLUSIONS: The presence of a vip3A gene in the genome of a Bt strain proved to be a strong indicator of toxicity towards S. frugiperda validating this biomarker approach as a strategy for future discovery programs. © 2024 Society of Chemical Industry.

11.
Front Public Health ; 12: 1343546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711767

RESUMO

Introduction: This paper aims to explore the intersection of corporate social responsibility (CSR) and public health within the context of digital platforms. Specifically, the paper explores the impact of digital platforms on the sustainable development practices of enterprises, seeking to comprehend how these platforms influence the implementation of environmental protection policies, resource management, and social responsibility initiatives. Methods: To assess the impact of digital platforms on corporate environmental behavior, we conducted a questionnaire survey targeting employees in private enterprises. This survey aimed to evaluate the relationship between the adoption of digital platforms and the implementation of environmental protection policies and practices. Results: Analysis of the survey responses revealed a significant positive correlation between the use of digital platforms and the environmental protection behavior of enterprises (r=0.523;p<0.001), Moreover, the presence of innovative environmental protection technologies on these platforms was found to positively influence the enforcement of environmental policies, with a calculated impact ratio of (a∗b/c=55.31%). An intermediary analysis highlighted that environmental innovation technology plays a mediating role in this process. Additionally, adjustment analysis showed that enterprises of various sizes and industries respond differently to digital platforms, indicating the need for tailored environmental policies. Discussion: These findings underscore the pivotal role of digital platforms in enhancing CSR efforts and public health by fostering improved environmental practices among corporations. The mediating effect of environmental innovation technologies suggests that digital platforms not only facilitate direct environmental actions but also enhance the efficiency and effectiveness of such initiatives through technological advances. The variability in response by different enterprises points to the importance of customizable strategies in policy formulation. By offering empirical evidence of digital platforms' potential to advance CSR and public health through environmental initiatives, this paper contributes to the ongoing dialogue on sustainable development goals. It provides practical insights for enterprises and policy implications for governments striving to craft more effective environmental policies and strategies.


Assuntos
Saúde Pública , Responsabilidade Social , Humanos , Inquéritos e Questionários , Tecnologia Digital , Política Ambiental , Desenvolvimento Sustentável
12.
Heliyon ; 10(9): e29825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726132

RESUMO

This paper explores methodologies to enhance the integration of a green supply chain circular economy within smart cities by incorporating machine learning technology. To refine the precision and effectiveness of the prediction model, the gravitational algorithm is introduced to optimize parameter selection in the support vector machine model. A nationwide prediction model for green supply chain economic development efficiency is meticulously constructed by leveraging public economic, environmental, and demographic data. A comprehensive empirical analysis follows, revealing a noteworthy reduction in mean squared error and root mean squared error with increasing iterations, reaching a minimum of 0.007 and 0.103, respectively-figures that are the lowest among all considered machine learning models. Moreover, the mean absolute percentage error value is remarkably low at 0.0923. The data illustrate a gradual decline in average prediction error and standard deviation throughout the model optimization process, indicative of both model convergence and heightened prediction accuracy. These results underscore the significant potential of machine learning technology in optimizing supply chain and circular economy management. The paper provides valuable insights for decision-makers and researchers navigating the landscape of sustainable development.

13.
Chem Rev ; 124(11): 7007-7044, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38787934

RESUMO

The consumption of synthetic polymers has ballooned; so has the amount of post-consumer waste generated. The current polymer economy, however, is largely linear with most of the post-consumer waste being either landfilled or incinerated. The lack of recycling, together with the sizable carbon footprint of the polymer industry, has led to major negative environmental impacts. Over the past few years, chemical recycling technologies have gained significant traction as a possible technological route to tackle these challenges. In this regard, olefin metathesis, with its versatility and ease of operation, has emerged as an attractive tool. Here, we discuss the developments in olefin-metathesis-based chemical recycling technologies, including the development of new materials and the application of olefin metathesis to the recycling of commercial materials. We delve into structure-reactivity relationships in the context of polymerization-depolymerization behavior, how experimental conditions influence deconstruction outcomes, and the reaction pathways underlying these approaches. We also look at the current hurdles in adopting these technologies and relevant future directions for the field.

14.
Sci Total Environ ; 935: 173455, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782282

RESUMO

Nitrous oxide (N2O) is a significant contributor to global warming and possesses an ozone-depleting impact nearly 298 times that of CO2. To reduce N2O emissions, the newly-discovered nod gene which can directly convert NO into N2 and O2 was successfully cloned from the anaerobic denitrification sludge. The recombinant plasmid containing the nod gene was built, and the expression of nod gene in Escherichia coli was determined, leading to the construction of recombinant engineering bacteria. Results showed that the recombinant engineering bacteria E. coli BL21 (DE3)-pET28a-nod could autonomously degrade NO, with a degradation rate of 72 % within 48 h, and could produce 2479.72 ppm of N2 and 75.12 mL of O2. The cumulative O2 production of the sludge sample and recombinant E. coli within 8 h was 1.75 mL and 8.45 mL, respectively. The cumulative O2 production of recombinant E. coli was at least 4.82 times higher than that of the sludge sample. The investigation proposed a new biodegradation pathway for nitrogen pollution.


Assuntos
Clonagem Molecular , Escherichia coli , Escherichia coli/genética , Biodegradação Ambiental , Óxido Nitroso , Esgotos/microbiologia
15.
Nanoscale ; 16(23): 11310-11317, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38804052

RESUMO

Room temperature phosphorescent (RTP) carbon dot (CD) materials have been widely used in various fields, but it is difficult to achieve a long lifetime, high stability and easy synthesis. In particular, realizing the phosphorescence emission of CDs using a metal oxide (MO) matrix is a challenge. Here, solid gels are synthesized via in situ hydrolysis, and then RTP CDs are synthesized based on a SiO2 matrix (CDs@SiO2) and hybridized with a MO matrix (CDs@SiO2-MO) by high-temperature calcination. Among the materials synthesized, Al2O3 matrix RTP CDs (CDs@SiO2-Al2O3) have a long phosphorescence lifetime of 689 ms and can exhibit yellow-green light visible to the naked eye for 9 s after the UV light (365 nm) is turned off. Compared with the green phosphorescence of CDs@SiO2, the yellow-green phosphorescence lifetime of CDs@SiO2-Al2O3 is enhanced by 420 ms. In addition, CDs@SiO2-Al2O3 maintains good stability of phosphorescence emission in water, strongly oxidizing solutions and organic solvents. As a result, CDs@SiO2-Al2O3 can be applied to the field of information encryption and security anti-counterfeiting, and this work provides a new, easy and efficient synthesis method for MO as an RTP CD matrix.

16.
Biochem Biophys Res Commun ; 719: 150027, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749089

RESUMO

Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated ß-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.


Assuntos
Envelhecimento , Ginsenosídeos , Inositol , Metabolômica , Panax , Fosfatidilcolinas , Animais , Panax/química , Ginsenosídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Fosfatidilcolinas/metabolismo , Camundongos , Masculino , Inositol/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL
17.
J Environ Manage ; 360: 121225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796867

RESUMO

As the global demand for clean energy continues to grow, the sustainable development of clean energy projects has become an important topic of research. in order to optimize the performance and sustainability of clean energy projects, this work explores the environmental and economic benefits of the clean energy industry. through the use of Support Vector Machine (SVM) Multi-factor models and a bi-level multi-objective approach, this work conducts comprehensive assessment and optimization. with wind power base a as a case study, the work describes the material consumption of wind turbines, transportation energy consumption and carbon dioxide (CO2) emissions, and infrastructure material consumption through descriptive statistics. Moreover, this work analyzes the characteristics of different wind turbine models in depth. On one hand, the SVM multi-factor model is used to predict and assess the profitability of Wind Power Base A. On the other hand, a bi-level multi-objective approach is applied to optimize the number of units, internal rate of return within the project, and annual average equivalent utilization hours of the Wind Power Base A. The research results indicate that in March, the WilderHill New Energy Global Innovation Index (NEX) was 0.91053, while the predicted value of the SVM multi-factor model was 0.98596. The predicted value is slightly higher than the actual value, demonstrating the model's good grasp of future returns. The cumulative rate of return of Wind Power Base A is 18.83%, with an annualized return of 9.47%, exceeding the market performance by 1.68%. Under the optimization of the bi-level multi-objective approach, the number of units at Wind Power Base A decreases from the original 7004 to 5860, with total purchase and transportation costs remaining basically unchanged. The internal rate of return of the project increases from 8% to 9.3%, and the annual equivalent utilization hours increase to 2044 h, comprehensively improving the investment return and utilization efficiency of the wind power base. Through optimization, significant improvements are achieved in terAs the global demand for clean energy continues to grow, the sustainable development of clean energy projects has become an important topic of research. In order to optimize the performance and sustainability of clean energy projects, this work explores the environmental and economic benefits of the clean energy industry. Through the use of Support Vector Machine (SVM) multi-factor models and a bi-level multi-objective approach, this work conducts comprehensive assessment and optimization. With Wind Power Base A as a case study, the work describes the material consumption of wind turbines, transportation energy consumption and carbon dioxide (CO2) emissions, and infrastructure material consumption through descriptive statistics. Moreover, this work analyzes the characteristics of different wind turbine models in depth. On one hand, the SVM multi-factor model is used to predict and assess the profitability of Wind Power Base A. On the other hand, a bi-level multi-objective approach is applied to optimize the number of units, internal rate of return within the project, and annual average equivalent utilization hours of the Wind Power Base A. The research results indicate that in March, the WilderHill New Energy Global Innovation Index (NEX) was 0.91053, while the predicted value of the SVM multi-factor model was 0.98596. The predicted value is slightly higher than the actual value, demonstrating the model's good grasp of future returns. The cumulative rate of return of Wind Power Base A is 18.83%, with an annualized return of 9.47%, exceeding the market performance by 1.68%. Under the optimization of the bi-level multi-objective approach, the number of units at Wind Power Base A decreases from the original 7004 to 5860, with total purchase and transportation costs remaining basically unchanged. The internal rate of return of the project increases from 8% to 9.3%, and the annual equivalent utilization hours increase to 2044 h, comprehensively improving the investment return and utilization efficiency of the wind power base. Through optimization, significant improvements are achieved in terms of the number of units, internal rate of return within the project, and annual average equivalent utilization hours at Wind Power Base A. The number of units decreases to 5860, with total purchase and transportation costs remaining basically unchanged, the internal rate of return increases to 9.3%, and annual equivalent utilization hours increase to 2044 h. Energy consumption and CO2 emissions are significantly reduced, with energy consumption decreasing by 0.68 × 109 kgce and CO2 emissions decreasing by 1.29 × 109 kg. The optimization effects are mainly concentrated in the production and installation stages, with emission reductions achieved through the recycling and disposal of materials consumed in the early stages. In terms of investment benefits, environmental benefits are enhanced, with a 13.93% reduction in CO2 emissions. Moreover, there is improved energy efficiency, with the energy input-output ratio increasing from 7.73 to 9.31. This indicates that the Wind Power Base A project has significant environmental and energy efficiency advantages in the clean energy industry. This work innovatively provides a comprehensive assessment and optimization scheme for clean energy projects and predicts the profitability of Wind Power Base A using SVM multi-factor models. Besides, this work optimizes key parameters of the project using a bi-level multi-objective approach, thus comprehensively improving the investment return and utilization efficiency of the wind power base. This work provides innovative methods and strong data support for the development of the clean energy industry, which is of great significance for promoting sustainable development under the backdrop of green finance.


Assuntos
Máquina de Vetores de Suporte , Desenvolvimento Sustentável , Vento , Dióxido de Carbono , Modelos Teóricos , Conservação de Recursos Energéticos/métodos
18.
Phytomedicine ; 130: 155580, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810558

RESUMO

BACKGROUND: Macrophages exhibit different phenotypes in inflammatory bowel disease (IBD) and promote inflammation or tissue repair depending on their polarization state. Alcohol is a widely used solvent in pharmaceutical formulations, and its consumption is associated with an increased risk of colitis; however, its effects on macrophages in IBD remain poorly understood. PURPOSE: This study aimed to investigate the effect of alcohol on macrophages in dextran sodium sulfate (DSS)-induced colitis and understand the underlying mechanisms. METHODS: DSS-treated C57BL/6 mice were exposed to varying concentrations of alcohol, transient receptor potential vanilloid 1 (TRPV1) antagonist, and 5-aminosalicylic acid. The distal colon was resected, fixed, stained, and histologically analyzed, through hematoxylin and eosin (H&E) staining and immunofluorescence staining. Ratio [Ca2+]i measurements, western blotting, quantitative polymerase chain reaction, cytokine measurements, and RNA sequencing analyses were also performed. Peritoneal macrophages and RAW264.7 cells were used for in vitro experiments, and various assays were performed to evaluate cellular responses, gene expression, and signaling pathways. RESULTS: Alcohol exacerbated DSS-treated mice colitis and promoted the secretion of various inflammatory cytokines from colonic macrophages. Alcohol enhances the calcium ion influx induced by lipopolysaccharide (LPS) in peritoneal macrophages, while the TRPV1 antagonist capsazepine (CPZ) inhibits LPS- and/or alcohol- induced calcium influx in macrophages. Alcohol and LPS activate the MAPK/P38, MAPK/ERK, and NF-κB signaling pathways and induce the macrophage M2b polarization, resulting in the increased expression level of inflammatory cytokines such as Tnf, Il1b, and Il10. Additionally, CPZ can inhibit the facilitatory effects of alcohol or LPS on the abovementioned pathways and inflammatory factors, reversing macrophage M2b polarization and promoting alcohol-induced colitis. The inhibition of nucleotide binding oligomerization domain containing 2 (NOD2) partially suppressed the alcohol and LPS effects on macrophages. CONCLUSION: Alcohol exacerbates experimental colitis and induces M2b polarization of macrophage via TRPV1-MAPK/NF-κB. Our study provides new insights into the potential therapeutic targets for IBD treatment by elucidating the role of TRPV1 in alcohol-exacerbated colitis, using CPZ as a potential therapeutic option. The identification of transient receptor potential ankyrin subtype 1 (TRPA1) as a therapeutic target expands the scope of future research.


Assuntos
Colite , Sulfato de Dextrana , Etanol , Macrófagos , NF-kappa B , Canais de Cátion TRPV , Animais , Masculino , Camundongos , Capsaicina/análogos & derivados , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
19.
Clin Interv Aging ; 19: 639-654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706634

RESUMO

Background: The triglyceride-glucose (TYG) index is a novel and reliable marker reflecting insulin resistance. Its predictive ability for cardiovascular disease onset and prognosis has been confirmed. However, for advanced chronic heart failure (acHF) patients, the prognostic value of TYG is challenged due to the often accompanying renal dysfunction (RD). Therefore, this study focuses on patients with aHF accompanied by RD to investigate the predictive value of the TYG index for their prognosis. Methods and Results: 717 acHF with RD patients were included. The acHF diagnosis was based on the 2021 ESC criteria for acHF. RD was defined as the eGFR < 90 mL/(min/1.73 m2). Patients were divided into two groups based on their TYG index values. The primary endpoint was major adverse cardiovascular events (MACEs), and the secondary endpoints is all-cause mortality (ACM). The follow-up duration was 21.58 (17.98-25.39) months. The optimal cutoff values for predicting MACEs and ACM were determined using ROC curves. Hazard factors for MACEs and ACM were revealed through univariate and multivariate COX regression analyses. According to the univariate COX regression analysis, high TyG index was identified as a risk factor for MACEs (hazard ratio = 5.198; 95% confidence interval [CI], 3.702-7.298; P < 0.001) and ACM (hazard ratio = 4.461; 95% CI, 2.962-6.718; P < 0.001). The multivariate COX regression analysis showed that patients in the high TyG group experienced 440.2% MACEs risk increase (95% CI, 3.771-7.739; P < 0.001) and 406.2% ACM risk increase (95% CI, 3.268-7.839; P < 0.001). Kaplan-Meier survival analysis revealed that patients with high TyG index levels had an elevated risk of experiencing MACEs and ACM within 30 months. Conclusion: This study found that patients with high TYG index had an increased risk of MACEs and ACM, and the TYG index can serve as an independent predictor for prognosis.


Assuntos
Glicemia , Insuficiência Cardíaca , Nefropatias , Triglicerídeos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Doença Crônica , Nefropatias/sangue , Nefropatias/diagnóstico , Nefropatias/etiologia , Triglicerídeos/sangue , Prognóstico , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade
20.
Neurosci Lett ; 836: 137833, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38796095

RESUMO

Alzheimer's disease (AD) is characterized by abnormal inflammatory responses, and complement C5a (C5a) is known to initiate inflammation. This study aimed to investigate the associations between serum C5a, inflammatory responses, and cognitive function in AD patients. A total of 242 AD patients and 132 age-matched controls were included. Enzyme-linked immunosorbent assay revealed increased levels of C5a, interleukin (IL)-4, IL-6, IL-10, IL-1ß, and tumor necrosis factor (TNF)-α with advancing stages of AD. Pearson correlation coefficient and receiver operating characteristic curve revealed positive correlations between serum C5a levels, inflammatory cytokine levels, Neuropsychiatric Inventory (NPI) and Activities of Daily Living (ADL) scores, and negative correlations with Mini-mental State Examination (MMSE) and Montreal cognitive assessment (MoCA) scores. Serum C5a above 68.68 pg/mL could aid in the diagnosis of AD. Multivariable logistic analysis revealed that serum C5a was an independent risk factor for IL-1ß/IL-6/IL-10/TNF-α and an independent protective factor for IL-4. Higher serum C5a levels were associated with lower MMSE and MoCA scores. In conclusion, elevated serum C5a levels were beneficial for AD diagnosis and predictive of inflammation and cognitive dysfunction.


Assuntos
Doença de Alzheimer , Complemento C5a , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Feminino , Masculino , Idoso , Complemento C5a/análise , Complemento C5a/metabolismo , Biomarcadores/sangue , Citocinas/sangue , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...