Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater Eng ; 34(6): 525-535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248875

RESUMO

BACKGROUND: Currently, quadrilateral anterior cervical plate (QACP) is a highly prevalent ACP. OBJECTIVE: This study aims to design a novel ACP using topology optimization (TOACP). METHODS: A completed model for C1-C7 cervical segments was established and validated. QACP and TOACP cage systems were implanted within two cervical vertebrae models, respectively, and peak stresses and stress distributions for screw, plate, endplate and cage displacement were investigated under differing exercise modes. RESULTS: Stress levels upon QACP screw were maximized for over-extension exercise (243.3 MPa, 3.35% > TOACP screw). Stress level upon TOACP plate was maximized for over-extension exercise (118.2 MPa, 7.26% > QACP screw). Following QACP cage system implantation, stress on endplate and cage displacement were maximized for extension exercise, which were 27.1%, and 6.3% > TOACP cage system, respectively. Finite element analysis results revealed that topological optimization of the plate can effectively reduce screw stress, thereby enhancing cervical segments' stability during surgery. Furthermore, stress on endplate and cage displacement decreased, indicating great potential in cage sinking and fusion enhancement. CONCLUSIONS: Topological optimization of the plate equips the cage system with advantages in clinical applications and biomechanical performance, providing alternative solutions and a theoretical basis for ACP design.


Assuntos
Fusão Vertebral , Fenômenos Biomecânicos , Fusão Vertebral/métodos , Amplitude de Movimento Articular , Placas Ósseas , Parafusos Ósseos , Vértebras Cervicais/cirurgia , Análise de Elementos Finitos
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(2): 303-312, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37139762

RESUMO

To investigate the effects of postoperative fusion implantation on the mesoscopic biomechanical properties of vertebrae and bone tissue osteogenesis in idiopathic scoliosis, a macroscopic finite element model of the postoperative fusion device was developed, and a mesoscopic model of the bone unit was developed using the Saint Venant sub-model approach. To simulate human physiological conditions, the differences in biomechanical properties between macroscopic cortical bone and mesoscopic bone units under the same boundary conditions were studied, and the effects of fusion implantation on bone tissue growth at the mesoscopic scale were analyzed. The results showed that the stresses in the mesoscopic structure of the lumbar spine increased compared to the macroscopic structure, and the mesoscopic stress in this case is 2.606 to 5.958 times of the macroscopic stress; the stresses in the upper bone unit of the fusion device were greater than those in the lower part; the average stresses in the upper vertebral body end surfaces were ranked in the order of right, left, posterior and anterior; the stresses in the lower vertebral body were ranked in the order of left, posterior, right and anterior; and rotation was the condition with the greatest stress value in the bone unit. It is hypothesized that bone tissue osteogenesis is better on the upper face of the fusion than on the lower face, and that bone tissue growth rate on the upper face is in the order of right, left, posterior, and anterior; while on the lower face, it is in the order of left, posterior, right, and anterior; and that patients' constant rotational movements after surgery is conducive to bone growth. The results of the study may provide a theoretical basis for the design of surgical protocols and optimization of fusion devices for idiopathic scoliosis.


Assuntos
Escoliose , Fusão Vertebral , Humanos , Escoliose/cirurgia , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia , Osteogênese , Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos
3.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070383

RESUMO

Erythropoietin (EPO) plays an important role in erythropoiesis by its action in blocking apoptosis of progenitor cells and protects both photoreceptors and retinal ganglion cells from induced or inherited degeneration. A modified form of EPO, EPO-R76E has attenuated erythropoietic activity but is effective in inhibiting apoptosis, oxidative stress, and inflammation in several models of retinal degeneration. In this study, we used recombinant Adeno Associated Virus (AAV) to provide long-term sustained delivery of EPO-R76E and demonstrated its effects in a mouse model of dry-AMD in which retinal degeneration is induced by oxidative stress in the retinal pigment epithelial (RPE) cells. Experimental vector AAV-EPO-R76E and control vector AAV-GFP were packaged into serotype-1 (AAV1) to enable RPE selective expression. RPE oxidative stress-mediated retinal degeneration was induced by exon specific deletion of the protective enzyme MnSOD (encoded by Sod2) by cre/lox mechanism. Experimental mice received subretinal injection of AAV-EPO-R76E in the right eye and AAV-GFP in the left eye. Western blotting of RPE/choroid protein samples from AAV-EPO-R76E injected eyes showed RPE specific EPO expression. Retinal function was monitored by electroretinography (ERG). EPO-R76E over-expression in RPE delayed the retinal degeneration as measured by light microscopy in RPE specific Sod2 knockout mice. Delivery of EPO-R76E vector can be used as a tool to prevent retinal degeneration induced by RPE oxidative stress, which is implicated as a potential cause of Age-Related Macular Degeneration.

4.
Sci Rep ; 7(1): 17414, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234130

RESUMO

To achieve six degree-of-freedom autonomous navigation of an inboard spacecraft, a novel algorithm called iterative closest imaging point (ICIP) is proposed, which deals with the pose estimation problem of a vision navigation system (VNS). This paper introduces the basics of the ICIP algorithm, including mathematical model, algorithm architecture, and convergence theory. On this basis, a navigation method is proposed. This method realizes its initialization using a Gaussian mixture model-based Kalman filter, which simultaneously solves the 3D-to-2D point correspondences and the camera pose. The initial value sensitivity, computational efficiency, robustness, and accuracy of the proposed navigation method are discussed based on simulation results. A navigation experiment verifies that the proposed method works effectively. The three-axis Euler angle accuracy is within 0.19° (1σ), and the three-axis position accuracy is within 1.87 mm (1σ). The ICIP algorithm estimates the full-state pose by merely finding the closest point couples respectively form the images obtained by the VNS and predicted at an initial value. Then the optimized solution of the imaging model is iteratively calculated and the full-state pose is obtained. Benefiting from the absence of a requirement for feature matching, the proposed navigation method offers advantages of low computational complexity, favorable stability, and applicability in an extremely simple environment in comparison with conventional methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...