Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Langmuir ; 40(4): 2343-2351, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230630

RESUMO

High-entropy alloy (HEA) nanoparticles have attracted great attention due to their excellent electrocatalytic properties. Herein, PtCuNiCoMn HEA nanoparticles supported on reduced graphene oxide (rGO) are synthesized via a solvothermal co-reduction method and are used as an electrocatalyst for the electrooxidation of methanol and formic acid. Owing to the synergistic effect between the component metals, the high-entropy effect, and the sluggish diffusion effect, the PtCuNiCoMn HEA nanoparticles possess significantly improved electrocatalytic activity and stability compared to PtCuNiCo, PtCuNi, PtCu, Pt nanoparticles, and the commercial Pt/C catalyst. The results reveal the unique advantages of HEA nanoparticles in the field of electrocatalysis. The synthesis method is simple and effective, which may be valuable for the preparation of other HEA electrocatalysts.

2.
Small ; 20(1): e2304847, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658511

RESUMO

The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.

3.
ACS Nano ; 18(1): 581-591, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126349

RESUMO

Neural networks based on low-power artificial synapses can significantly reduce energy consumption, which is of great importance in today's era of artificial intelligence. Two-dimensional (2D) material-based floating-gate transistors (FGTs) have emerged as compelling candidates for simulating artificial synapses owing to their multilevel and nonvolatile data storage capabilities. However, the low erasing/programming speed of FGTs renders them unsuitable for low-energy-consumption artificial synapses, thereby limiting their potential in high-energy-efficient neuromorphic computing. Here, we introduce a FGT-inspired MoS2/Trap/PZT heterostructure-based polarized tunneling transistor (PTT) with a simple fabrication process and significantly enhanced erasing/programming speed. Distinct from the FGT, the PTT lacks a tunnel layer, leading to a marked improvement in its erasing/programming speed. The PTT's highest erasing/programming (operation) speed can reach ∼20 ns, which outperforms the performance of most FGTs based on 2D heterostructures. Furthermore, the PTT has been utilized as an artificial synapse, and its weight-update energy consumption can be as low as 0.0002 femtojoule (fJ), which benefits from the PTT's ultrahigh operation speed. Additionally, PTT-based artificial synapses have been employed in constructing artificial neural network simulations, achieving facial-recognition accuracy (95%). This groundbreaking work makes it possible for fabricating future high-energy-efficient neuromorphic transistors utilizing 2D materials.

4.
Chem Commun (Camb) ; 60(2): 180-183, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038240

RESUMO

Herein, an oxygen-defect-rich core-shell Fe2O3-x@C polyhedral sulfur host was prepared, which effectively promoted electrochemical conversion and further inhibited the "shuttle effect" in lithium-sulfur (Li-S) batteries. Fe2O3-x@C@S provided a high initial capacity of 1395 mA h g-1 and a low attenuation of ∼0.067% per cycle.

5.
Nano Lett ; 23(22): 10196-10204, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37926956

RESUMO

Low-power electronic devices play a pivotal role in the burgeoning artificial intelligence era. The study of such devices encompasses low-subthreshold swing (SS) transistors and neuromorphic devices. However, conventional field-effect transistors (FETs) face the inherent limitation of the "Boltzmann tyranny", which restricts SS to 60 mV decade-1 at room temperature. Additionally, FET-based neuromorphic devices lack sufficient conductance states for highly accurate neuromorphic computing due to a narrow memory window. In this study, we propose a pioneering PZT-enabled MoS2 floating gate transistor (PFGT) configuration, demonstrating a low SS of 46 mV decade-1 and a wide memory window of 7.2 V in the dual-sweeping gate voltage range from -7 to 7 V. The wide memory window provides 112 distinct conductance states for PFGT. Moreover, the PFGT-based artificial neural network achieves an outstanding facial-recognition accuracy of 97.3%. This study lays the groundwork for the development of low-SS transistors and highly energy efficient artificial synapses utilizing two-dimensional materials.

6.
Front Public Health ; 11: 1225883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942240

RESUMO

Objective: HIV/AIDS remains a global public health problem, and understanding the structure of social networks of people living with HIV/AIDS is of great importance to unravel HIV transmission, propose precision control and reduce new infections. This study aimed to investigate the epidemiological characteristics of HIV transmission in Fujian province, southeastern China from 2015 to 2020 based on HIV molecular network. Methods: Newly diagnosed, treatment-naive HIV/AIDS patients were randomly sampled from Fujian province in 2015 and 2020. Plasma was sampled for in-house genotyping resistance test, and HIV molecular network was created using the HIV-TRACE tool. Factors affecting the inclusion of variables in the HIV molecular network were identified using univariate and multivariate logistic regression analyses. Results: A total of 1,714 eligible cases were finally recruited, including 806 cases in 2015 and 908 cases in 2020. The dominant HIV subtypes were CRF01_AE (41.7%) and CRF07_BC (38.3%) in 2015 and CRF07_BC (53. 3%) and CRF01_AE (29.1%) in 2020, and the prevalence of HIV drug resistance was 4.2% in 2015 and 5.3% in 2020. Sequences of CRF07_BC formed the largest HIV-1 transmission cluster at a genetic distance threshold of both 1.5 and 0.5%. Univariate and multivariate logistic regression analyses showed that ages of under 20 years and over 60 years, CRF07_BC subtype, Han ethnicity, sampling in 2015, absence of HIV drug resistance, married with spouse, sampling from three cities of Jinjiang, Nanping and Quanzhou resulted in higher proportions of sequences included in the HIV transmission molecular network at a genetic distance threshold of 1.5% (p < 0.05). Conclusion: Our findings unravel the HIV molecular transmission network of newly diagnosed HIV/AIDS patients in Fujian province, southeastern China, which facilitates the understanding of HIV transmission patterns in the province.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Humanos , Síndrome da Imunodeficiência Adquirida/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/diagnóstico , HIV-1/genética , Epidemiologia Molecular , China/epidemiologia
7.
Inorg Chem ; 62(44): 18307-18314, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37874271

RESUMO

The inhibition of lithium polysulfide (LiPS) diffusion and the acceleration of reaction kinetics are two major challenges for the practical application of lithium-sulfur (Li-S) batteries. Herein, through an interface engineering strategy, a multifunctional sulfur host based on Ru nanocluster-modified TiO2 nanotubes (TiO2-Ru) was designed. The TiO2-Ru interface field effect, combined with the hollow nanotube structure and the strong chemical action of TiO2, enhanced the LiPS trapping ability and inhibited the "shuttle effect". Furthermore, the high catalytic activity of Ru nanoclusters reduced the energy barrier of multistep LiPS reactions, thus speeding up the electrode kinetics. As a result, the TiO2-Ru-based composite sulfur cathode delivered excellent electrochemical performance, including an extremely low capacity loss of ∼0.015% per cycle and an increased areal capacity of ∼6.1 mAh cm-2 at 4.8 mg cm-2. This work contributes to a better sulfur cathode design from insights into morphology and phase interface engineering.

8.
Appl Opt ; 62(15): 3848-3854, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706693

RESUMO

The effects of magnesium ion implantation and post-annealing on the photoelectric performance of a ß-G a 2 O 3-based vertical structural Schottky photodetector (PD) were thoroughly investigated. After implantation and post-annealing, the Schottky barrier height and bandgap of the G a 2 O 3 surface can be slightly increased, while the dark current is significantly reduced, and the light-to-dark current ratio is immensely improved. The PD exhibited a photo-to-dark current ratio of 1733, responsivity of 5.04 mA/W, and specific detectivity of 3.979×1011 Jones under -2.6V bias, and the rise and decay times are 0.157 were 0.048 s, respectively. The large left shift of the open-circuit voltage is feasibly explained by applying the thermionic-emission diffusion theory.

9.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630208

RESUMO

As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicina Tradicional Chinesa , Humanos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas
10.
J Phys Chem Lett ; 14(24): 5531-5536, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294148

RESUMO

For plasmonic systems, pursuit of higher photothermal conversion efficiency (PCE) in the near-infrared II region and a relevant photophysical mechanism is helpful for practical applications. Here, we measure the femtosecond transient absorption spectra of Cu2-xS nanochains (PAA-chains-8.9 and PSS-chains-7.3) and nanoparticles (PSS-particles-8.2) to track the excited carrier decay dynamics. The ultrafast carrier-phonon scattering (∼0.33 ps) in PAA-chains-8.9 depletes a vast majority of the excited-state population (>90%). Moreover, the particles have longer decay time for phonon-phonon scattering than the chains. The Fermi level of nanochains is higher than that of nanoparitcles, which affects the attenuation dynamic process of the excited carriers. The PSS-chains-7.3 exhibit higher PCE (88.0%) than PSS-particles-8.2 (82.1%) with a slower phonon-phonon scattering. A remarkable PCE of 90.5% is achieved in PAA-chains-8.9, which represents the highest value in plasmonic photothermal agents. This research indicates strong carrier-phonon scattering and short phonon-phonon scattering processes have great contribution in boosting the PCE.

11.
J Colloid Interface Sci ; 646: 834-843, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230001

RESUMO

The study analyzed the impact of oxygen defects and S-scheme heterojunction on the performance and stability of WO2.72/Zn0.5Cd0.5S-DETA (WO/ZCS) nanocomposites photocatalysts for hydrogen evolution. Results showed that ZCS alone under visible light had good photocatalytic hydrogen evolution activity (1.762 mmol g-1h-1) and stability (79.5 % activity retention rate after seven cycles, 21 h). The WO3/ZCS nanocomposites with S-scheme heterojunction had better hydrogen evolution activity (2.287 mmol g-1h-1), but poor stability (41.6 % activity retention rate). The WO/ZCS nanocomposites with S-scheme heterojunction and oxygen defects showed excellent photocatalytic hydrogen evolution activity (3.94 mmol g-1h-1) and stability (89.7 % activity retention rate). The specific surface area measurement and ultraviolet-visible spectroscopy diffuse reflectance spectroscopy indicate that oxygen defects lead to larger specific surface area and improved light absorption, respectively. The charge density difference confirms the existence of the S-scheme heterojunction and the amount of charge transfer, which accelerates the separation of photogenerated electron-hole pairs and enhances the utilization efficiency of light and charge. This study offers a new approach using the synergistic impact of oxygen defects and S-scheme heterojunction to enhance the photocatalytic hydrogen evolution activity and stability.

12.
Nanoscale Adv ; 5(6): 1706-1713, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926579

RESUMO

Negatively charged nanomaterials have good biocompatibility and low cytotoxicity, but the efficiency of their entry into cells is relatively low. Thus, striking a balance between cell transport efficiency and cytotoxicity is a challenging problem in the field of nanomedicine. In this work, negatively charged Cu1.33S nanochains have shown a higher cellular uptake level in 4T1 cells than Cu1.33S nanoparticles with a similar diameter and surface charge. Inhibition experiments indicate that the cellular uptake of the nanochains depends principally on the lipid-raft protein (i.e. caveolin-1) mediated pathway, although the role of clathrin cannot be ruled out. Caveolin-1 can provide short-range attraction at the membrane interface. Furthermore, by using biochemical analysis, blood routine examination and histological evaluation on healthy Sprague Dawley rats, it is found that the Cu1.33S nanochains have no obvious toxic effect. The Cu1.33S nanochains have an effective photothermal therapy effect of tumor ablation in vivo under low injection dosage and laser intensity. As for the best performing group (20 µg + 1 W cm-2), the temperature of the tumor site rapidly increases within the initial 3 min and rises to a plateau of 79 °C (ΔT = 46 °C) at 5 min. These results reveal the feasibility of the Cu1.33S nanochains as a photothermal agent.

13.
BMC Plant Biol ; 23(1): 78, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740685

RESUMO

BACKGROUND: Brown macroalgae dominate temperate coastal ecosystems, and their productivity is typically limited by nitrate availability. As an economically important kelp, Saccharina japonica is the most productive farmed seaweed and needs to be supplemented with sufficient nitrate throughout the cultivation process. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted in brown macroalgae. RESULTS: Here, we described the identification of the nitrate reductase (NR) gene from S. japonica (SjNR). Using two different cloning methods for SjNR, i.e. rapid amplification of cDNA ends (RACE) and cDNA cloning alone, a single fragment was obtained respectively. According to results of sequence analysis between these two fragments, the tentative coding sequence in two clones, SjNR-L and SjNR-S, were suggested to represent two transcripts of the single copy SjNR, and the ATG of SjNR-S was located inside the third exon of SjNR-L. In the 5' upstream sequence of each transcript, promoter core elements, response elements, especially multiple N response elements which occurred in microalgal NR, were all predicted. Further sequence analysis revealed that both transcripts encoded all five domains conserved in eukaryotic plant NRs. RT-qPCR results showed that the transcription level of SjNR in juvenile sporophytes could be significantly induced by nitrate and inhibited by ammonium, which was in line with plant NRs. The recombinant SjNR-L and SjNR-S were all proved to have NR activity, suggesting that the single-copy gene SjNR might be regulated on transcription level based on alternative promoters and multiple transcriptional start sites. Moreover, both NADH and NADPH were found to be able to act as electron donors for SjNR alone, which is the first confirmation that brown algal NR has a NAD(P)H-bispecific form. CONCLUSION: These results will provide a scientific basis for understanding the N demand of kelp in various stages of cultivation and evaluating the environmental remediation potential of kelp in eutrophic sea areas.


Assuntos
Laminaria , Nitrato Redutase , Alga Marinha , Clonagem Molecular , DNA Complementar/genética , Ecossistema , Laminaria/enzimologia , Laminaria/genética , Nitrato Redutase/genética , Nitratos , Alga Marinha/enzimologia , Alga Marinha/genética
14.
Front Psychiatry ; 14: 1102843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815191

RESUMO

Introduction: Symptoms of depression are associated with the dysfunction of neural systems such as the emotion, reward system, and the default mode network. These systems were suggested by the model of neuroaesthetics as key contributions to aesthetic experience, leading to the prediction of atypical aesthetic orientation in depression. Here we investigated the aesthetic characteristics of depression and the corresponding neural underpinnings. Methods: Fifty-two (25 depression patients, 27 healthy controls) participants were asked to make aesthetic judgments on faces and landscapes in an electroencephalographic (EEG) experiment. Results: Our results indicate that relative to the controls, the depression tended to give ugly judgments and refrained from giving beautiful judgments, which was observed only for faces but not for landscapes. We also found that the face-induced component N170 was more negative in the depression group than the control group for ugly and neutral faces. Moreover, the aesthetic evaluation of ugly faces was associated with decreased N200 negativity in the depression group than in the control group, while the evaluation of beautiful faces was associated with decreased brain synchronization at the theta band. Discussion: These results suggested a face-specific negative aesthetic bias in depression which can help to design and develop aesthetics-oriented schemes in assisting the clinical diagnosis and therapy of depression.

15.
Environ Geochem Health ; 45(4): 1117-1131, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34792674

RESUMO

The 2017 ban on the waste import and new policies for the waste management sector in mainland China had wide-spread impact. After decades of poor environmental and public health impacts from the sector, a study is needed which focuses on policies updates and waste management. This provides a direction for the survival of local waste management industries and consider similarities with the ban promulgated in China on the restriction of waste import from other countries. We review the waste management situation in China before national legislation prevented the import of waste, highlight the status of landfill mining in China, and review the dynamics of domestic policies before and after the promulgation of the ban in China. The impact of the COVID19 pandemic on the waste management system is starting to emerge, providing both challenges and opportunities for the sector in China. We see the impact of the ban on the range of imported waste and domestically generated materials. The ban results in price increases for domestic recycling that forces companies to introduce more formal recycling processes and to drive the consumption behaviours to more reasonable and environmentally friendly options. The driver in China is to reduce pollution in the environment and improve health, but a negative impact has been from increased landfill mining which has impeded the original aim of the waste ban and requires further technological development. The dynamic of domestic policies in China shows higher level of activity of updates and revisions or introduction of new policies from 2015 onwards and the concept of 'zero waste cities' brings new hope for improvement of the Chinese waste management system. The pandemic also suggests an important step to establish sustainable management systems despite evidence of increased "fly-tipping". The rebound of the waste ban may have stimulated in the short term negative impacts on local environments both in China and internationally.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Gerenciamento de Resíduos/métodos , China , Poluição Ambiental , Saúde Pública , Reciclagem
16.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203256

RESUMO

To improve the chemical regulation on the activity of cyclic dinucleotides (CDNs), we here designed a reduction-responsive dithioethanol (DTE)-based dCDN prodrug 9 (DTE-dCDN). Prodrug 9 improved the cell permeability with the intracellular levels peaking in 2 h in THP-1 cells. Under the reductive substance such as GSH or DTT, prodrug 9 could be quickly decomposed in 30 min to release the parent dCDN. In THP1-Lucia cells, prodrug 9 also retained a high bioactivity with the EC50 of 0.96 µM, which was 51-, 43-, and 3-fold more than the 2',3'-cGAMP (EC50 = 48.6 µM), the parent compound 3',3'-c-di-dAMP (EC50 = 41.3 µM), and ADU-S100 (EC50 = 2.9 µM). The high bioactivity of prodrug 9 was validated to be highly correlated with the activation of the STING signaling pathway. Furthermore, prodrug 9 could also improve the transcriptional expression levels of IFN-ß, CXCL10, IL-6, and TNF-α in THP-1 cells. These results will be helpful to the development of chemically controllable CDN prodrugs with a high cellular permeability and potency.


Assuntos
Desoxirribose , Pró-Fármacos , Alarminas , Fosfatos de Dinucleosídeos , Permeabilidade , Pró-Fármacos/farmacologia
17.
Eur J Med Chem ; 243: 114796, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198216

RESUMO

Cancer immunotherapy is a powerful weapon in the fight against cancers. Cyclic dinucleotides (CDNs) have demonstrated the great potential by evoking the immune system to fight cancers. There are still a lot of unmet needs for highly active CDNs in clinical applications due to low cell permeation and serum stability. Here we reported S-acylthioalkyl ester (SATE)-based prodrugs of deoxyribose cyclic dinucleotides (dCDNs) with three different types of internucleotide linkages (3',3':11a; 2',3':11b; 2',2':11c). The parent dCDNs could be efficiently released from SATE-dCDNs by cellular esterases. Compared to 2',3'-cGAMP and ADU-S100, 11a exhibited much higher potency of activating STING pathway and higher serum stability. In a CT26-Luc tumor-bearing animal model, 11a showed the efficient antitumor activity in eliminating the established tumor and induced significant increase of mRNA expression of IFN-ß and other related inflammatory cytokines. Hence, SATE-dCDN prodrugs demonstrated their benefits in promoting cell penetration, improving serum stability, and thus enhancing bioactivity, suggesting their potential application as immunotherapy in a variety of malignancies.


Assuntos
Neoplasias , Pró-Fármacos , Animais , Pró-Fármacos/farmacologia , Desoxirribose , Ésteres/farmacologia , Imunoterapia , Fatores Imunológicos , Neoplasias/tratamento farmacológico
18.
Front Immunol ; 13: 1007202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189301

RESUMO

The oral mucosal vaccine has great potential in preventing a series of diseases caused by porcine circovirus type 2 (PCV2) infection. This study constructed a recombinant Bacillus subtilis RB with PCV2 Capsid protein (Cap) on its spore surface and cotB as a fusion partner. The immune properties of the recombinant strain were evaluated in a mouse model. IgA in intestinal contents and IgG in serum were detected by enzyme-linked immunosorbent assay (ELISA). The results demonstrated that recombinant spores could activate strong specific mucosal and humoral immune responses. In addition, spores showed good mucosal immune adjuvant function, promoting the proliferation of CD3+, CD4+ and CD8+ T cells and other immune cells. We also found that the relative expression of inflammatory cytokines such as IL-1ß, IL-6, IL-10, TNF-α and IFN in the small intestinal mucosa was significantly up-regulated under the stimulation of recombinant bacteriophage. These effects are important for the balance of Th1/Th2-like responses. In summary, our results suggest that recombinant B. subtilis RB as a feed additive provides a new strategy for the development of novel and safe PCV2 mucosal subunit vaccines.


Assuntos
Circovirus , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Bacillus subtilis/genética , Proteínas do Capsídeo/genética , Circovirus/genética , Imunoglobulina A , Imunoglobulina G , Interleucina-10 , Interleucina-6 , Camundongos , Esporos Bacterianos , Suínos , Fator de Necrose Tumoral alfa , Vacinas de Subunidades Antigênicas
19.
Emerg Microbes Infect ; 11(1): 1550-1553, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35604772

RESUMO

In order to overcome the pandemic of COVID-19, messenger RNA (mRNA)-based vaccine has been extensively researched as a rapid and versatile strategy. Herein, we described the immunogenicity of mRNA-based vaccines for Beta and the most recent Omicron variants. The homologous mRNA-Beta and mRNA-Omicron and heterologous Ad5-nCoV plus mRNA vaccine exhibited high-level cross-reactive neutralization for Beta, original, Delta, and Omicron variants. It indicated that the COVID-19 mRNA vaccines have great potential in the clinical use against different SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
20.
Brain Sci ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36672020

RESUMO

It is generally believed that working memory (WM) is dysfunctional in depression. However, whether this impaired performance originates from impaired encoding, maintenance or both stages is still unclear. Here, we aimed to decompose the abnormal characteristics of encoding and maintenance in patients with recurrent major depressive disorder (MDD). Thirty patients and thirty-nine healthy controls completed a spatial working memory task where the encoding time and the retention time could vary under different load levels. Encoding performance was assessed by comparing accuracies between short and long encoding times, and maintenance performance was assessed by comparing accuracies between short and long retention times. The results show a lower performance in depression than the controls. However, while the decreased accuracy by long retention (vs. short retention) was increased by a short encoding time in the control group, the retention performance of the depression group did not further suffer from the short encoding time. The generally impaired encoding, together with limited maintenance of immunity against the constrained encoding time, suggests a common bias for fixed internal processing over external processing in recurrent MDD. The paradigm provided in this study can be a convenient and efficient clinical test for assessing the WM encoding and maintenance function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...