Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8853-8862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38692832

RESUMO

Li-S batteries are hampered by problems with their cathodes and anodes simultaneously. The improvement of Li-S batteries needs to consider both the anode and cathode. Herein, a Bi2Se3@MXene composite is prepared for the first time by rapidly growing Bi2Se3 nanodots on two-dimensional (2D) MXene nanosheets at room temperature through simply adding high-reactive hydroxyethylthioselenide in Bi3+/MXene aqueous solution. Bi2Se3@MXene exhibits a 2D structure due to the template effect of 2D MXene. Bi2Se3@MXene can not only facilitate the conversion of lithium polysulfides (LiPSs) but also inhibit their shuttling in the S cathode due to its catalytic effect and adsorption force with LiPSs. Bi2Se3@MXene can also be used as an interfacial lithiophilic layer to inhibit Li dendrite growth in the Li metal anode. Theoretical calculations reveal that Bi2Se3 nanodots in Bi2Se3@MXene can effectively boost the adsorption ability with LiPSs, and the MXene in Bi2Se3@MXene can accelerate the electron transport. Under the bidirectional regulation of Bi2Se3@MXene in the Li metal anode and S cathode, the Li-S battery shows an enhanced electrochemical performance.

2.
Sci Bull (Beijing) ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555262

RESUMO

The practical application of lithium-sulfur (Li-S) batteries is inhibited by the shuttle effect of lithium polysulfides (LiPSs) and slow polysulfide redox kinetics on the S cathode as well as the uncontrollable growth of dendrites on the Li metal anode. Therefore, both cathode and anode sides must be considered when modifying Li-S batteries. Herein, two-dimensional (2D) ultrathin CoSe2 nanobelts are in situ grown on 2D N-doped MXene nanosheets (CoSe2@N-MXene) via one-step solvothermal process for the first time. Owing to its unique 2D/2D structure, CoSe2@N-MXene can be processed to crumpled nanosheets by freeze-drying and flexible and freestanding films by vacuum filtration. These crumpled CoSe2@N-MXene nanosheets with abundant active sites and inner spaces can act as S hosts to accelerate polysulfide redox kinetics and suppress the shuttle effect of LiPSs owing to their strong adsorption ability and catalytic conversion effect with LiPSs. Meanwhile, the CoSe2@N-MXene film (CoSe2@NMF) can act as a current collector to promote uniform Li deposition because it contains lithiophilic CoSe2 and N sites. Under the systematic effect of CoSe2@N-MXene on S cathode and Li metal anode, the electrochemical and safety performance of Li-S batteries are improved. CoSe2@NMF also shows excellent storage performances in flexible energy storage devices.

3.
Small ; 20(23): e2309422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200681

RESUMO

The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.

4.
Adv Mater ; 36(2): e2306015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615277

RESUMO

As an indispensable component of rechargeable batteries, the current collector plays a crucial role in supporting the electrode materials and collecting the accumulated electrical energy. However, some key issues, like uneven resources, high weight percentage, electrolytic corrosion, and high-voltage instability, cannot meet the growing need for rechargeable batteries. In recent years, MXene-based current collectors have achieved considerable achievements due to its unique structure, large surface area, and high conductivity. The related research has increased significantly. Nonetheless, a comprehensive review of this area is seldom. Herein the applications and progress of MXene in current collector are systematically summarized and discussed. Meanwhile, some challenges and future directions are presented.

5.
Front Plant Sci ; 14: 1301117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046600

RESUMO

Developing and planting salt-tolerant plants has become a promising way to utilize saline-alkali land resources and ensure food security. Root-associated microbes of salt-tolerant plants have been shown to promote plant growth and alleviate high salt stress, yet very little is known about the salt resistance mechanisms of core microbes in different niches. This study characterized the microbial community structures, assembly processes, and functional profiles in four root-related compartments of two salt-tolerant plants by amplicon and shotgun metagenomic sequencing. The results showed that both plants significantly altered the microbial community structure of saline soils, with greater microbial alpha diversity in the rhizosphere or rhizoplane compared with bulk soils. Stochastic process dominated the microbial assembly processes, and the impact was stronger in Suaeda salsa than in S. glauca, indicating that S. salsa may have stronger resistance abilities to changing soil properties. Keystone species, such as Pseudomonas in the endosphere of S. glauca and Sphingomonas in the endosphere of S. salsa, which may play key roles in helping plants alleviate salt stress, were identified by using microbial co-occurrence network analysis. Furthermore, the microbiomes in the rhizoplane soils had more abundant genes involved in promoting growth of plants and defending against salt stress than those in bulk soils, especially in salt-tolerant S. salsa. Moreover, microbes in the rhizoplane of S. salsa exhibited higher functional diversities, with notable enrichment of genes involved in carbon fixation, dissimilar nitrate reduction to ammonium, and sulfite oxidation. These findings revealed differences and similarities in the microbial community assembly, functional profiles and keystone species closely related to salt alleviation of the two salt-tolerant plants. Overall, our study provides new insights into the ecological functions and varied strategies of rhizosphere microbes in different plants under salt stress and highlights the potential use of keystone microbes for enhancing salt resistance of plants.

6.
Adv Mater ; 35(32): e2303780, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165604

RESUMO

Lithium-sulfur (Li-S) battery is a promising energy storage system due to its cost effectiveness and high energy density. However, formation of Li dendrites from Li metal anode and shuttle effect of lithium polysulfides (LiPSs) from S cathode impede its practical application. Herein, ultrafine ZnS nanodots are uniformly grown on 2D MXene nanosheets by a low-temperature (60 °C) hydrothermal method for the first time. Distinctively, the ZnS nanodot-decorated MXene nanosheets (ZnS/MXene) can be easily filtered to be a flexible and freestanding film in several minutes. The ZnS/MXene film can be used as a current collector for Li-metal anode to promote uniform Li deposition due to the superior lithiophilicity of ZnS nanodots. ZnS/MXene powders obtained by freeze drying can be used as separator decorator to address the shuttle effect of LiPSs due to their excellent adsorbability. Theoretical calculation proves that the existence of ZnS nanodots on MXene can obviously improve the adsorption ability of ZnS/MXene with Li+ and LiPSs. Li-S full cells with composite Li-metal anode and modified separator exhibit remarkable rate and cycling performance. Other transition metal sulfides (CdS, CuS, etc.) can be also grown on 2D MXene nanosheets by the low-temperature hydrothermal strategy.

7.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499180

RESUMO

Chaetoglobosin A (CheA), a well-known macrocyclic alkaloid with prominently highly antimycotic, antiparasitic, and antitumor properties, is mainly produced by Chaetomium globosum. However, a limited understanding of the transcriptional regulation of CheA biosynthesis has hampered its application and commercialization in agriculture and biomedicine. Here, a comprehensive study of the CgXpp1 gene, which encodes a basic helix-loop-helix family regulator with a putative role in the regulation of fungal growth and CheA biosynthesis, was performed by employing CgXpp1-disruption and CgXpp1-complementation strategies in the biocontrol species C. globosum. The results suggest that the CgXpp1 gene could be an indirect negative regulator in CheA production. Interestingly, knockout of CgXpp1 considerably increased the transcription levels of key genes and related regulatory factors associated with the CheA biosynthetic. Disruption of CgXpp1 led to a significant reduction in spore production and attenuation of cell development, which was consistent with metabolome analysis results. Taken together, an in-depth analysis of pleiotropic regulation influenced by transcription factors could provide insights into the unexplored metabolic mechanisms associated with primary and secondary metabolite production.


Assuntos
Chaetomium , Metabolismo Secundário/genética , Chaetomium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Microb Biotechnol ; 15(10): 2562-2577, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930651

RESUMO

Chaetoglobosin A is a complex macrocyclic alkaloid with potent antimycotic, antiparasitic and antitumor properties. However, the low output and high cost of chaetoglobosin A biosynthesis have hampered the application and commercialization of chaetoglobosin A in agriculture and biomedicine. Here, the CgMfs1 gene, which encodes the major facilitator superfamily secondary transporter, was identified based on bioinformatics analysis, and an intensive study of its effects on chaetoglobosin A biosynthesis and secretion was performed using CgMfs1-silencing and CgMfs1-overexpression strategies. Inactivation of CgMfs1 caused a notable decrease in chaetoglobosin A yield from 58.66 mg/L to 19.95 mg/L (MFS1-3) and 17.13 mg/L (MFS1-4). The use of an efficient expression plasmid in Chaetomium globosum W7 to generate the overexpression mutant OEX13 resulted in the highest chaetoglobosin A increase to 298.77 mg/L. Interestingly, the transcription level of the polyketide synthase gene significantly fluctuated with the change in CgMfs1, confirming that the predicted efflux gene CgMfs1 could play a crucial role in chaetoglobosin A transportation. Effective efflux of chaetoglobosin A could possibly alleviate feedback inhibition, resulting in notable increase in the expression of the polyketide synthase gene. Furthermore, we utilized cornstalk as the fermentation substrate to produce chaetoglobosin A, and scanning electron microscopy and Fourier transform-infrared spectroscopy revealed that the strain OEX13 could well degrade cornstalk, presenting significant increases in the chaetoglobosin A yield, when compared with that produced by the wild-type strain (from 40.32 to 191.90 mg/L). Thus, this research provides a novel analogous engineering strategy for the construction of high-yielding strain and offers new insight into large-scale chaetoglobosin A production.


Assuntos
Alcaloides , Policetídeo Sintases , Antiparasitários , Chaetomium , Alcaloides Indólicos
9.
Synth Syst Biotechnol ; 7(4): 1084-1094, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35949485

RESUMO

Cytochalasans, with diverse structures and pharmacological activities, are a class of compounds containing isoindolinone moieties fused to the tricyclic or tetracyclic ring system. Chaetoglobosin A (cheA), mainly produced by Chaetomium globosum, is the most abundant cytochalasan. However, limited understanding of transcriptional regulation of morphological development and cheA biosynthesis in C. globosum has hindered cheA application in agriculture and biomedical field. This study examined the regulatory role of CgVeA gene in C. globosum. CgVeA had significant effect on secondary metabolites production in C. globosum, similar to that reported in other filamentous fungi. Inactivation of CgVeA caused an obvious decrease in cheA production from 51.32 to 19.76 mg/L under dark conditions. In contrast, CgVeA overexpression resulted in a dramatic increase in cheA production, reaching 206.59 mg/L under light conditions, which was higher than that noted under dark condition. The RT-qPCR results confirmed that CgVeA, as a light responsive regulator, positively regulated cheA biosynthesis by controlling the expression of core genes of the cheA biosynthetic gene cluster and other relevant regulators. Electrophoretic mobility shift assays proved that CgVeA directly regulated LaeA, cheR, and p450, and indirectly regulated PKS. Moreover, CgVeA had a significant effect on the regulation of asexual spores production. When compared with wild-type C. globosum, CgVeA-silenced and CgVeA overexpression mutants presented remarkable differences in sporulation, irrespective of light or dark condition. Besides, CgVeA expression was speculated to negatively regulate spore formation. These findings illustrated the regulatory mechanism of a hypothetical global regulator, CgVeA, in C. globosum, suggesting its potential application in industrial-scale cheA biosynthesis.

10.
Antonie Van Leeuwenhoek ; 114(11): 1829-1839, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34460021

RESUMO

During the investigation of exploring potential sources of novel species and natural bioactives, a novel actinomycete, designated strain HIT-DPA4T, was isolated from a soil sample, which was collected from Nanjing, Jiangsu Province, PR China and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities and the result of phylogenetic analysis, strain HIT-DPA4T was most closely related to Streptomyces cyaneus CGMCC 4.1671 T, and shared the highest sequence similarity of 98.76%. In addition, the cell walls of the species HIT-DPA4T contained LL-diaminopimelic acid as the diagnostic diamino acid and the whole-cell hydrolysates were identified as glucose and ribose, and the principal phospholipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and phosphatidylmonomethylethanolamine. MK-9(H6) and MK-9(H4) were predominant menaquinones; and C16:0, anteiso-C15:0 and C15:0 as major cellular fatty acids of the organism HIT-DPA4T. Gene Ontology database analysis and antiSMASH server predicted results displayed that strain HIT-DPA4T was a promising classification units, which has various types of functions and contains multiple biosynthetic gene clusters with the similarity more than 80%. Multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) illustrated that Streptomyces luteolifulvus formed a separate branch in the genus Streptomyces. However, a combination of low level of DNA-DNA relatedness and physiological properties indicated that strain HIT-DPA4T can be distinguished from its phylogenetically related species Streptomyces cyaneus CGMCC 4.1671 T. Moreover, gene synteny research could be further differed organism HIT-DPA4T from similarity species. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces luteolifulvus sp. nov. is proposed. The type strain is HIT-DPA4T (= CGMCC 4.7558 T = TISTR 2751 T).


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Solo , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...