Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(1): 1296-1304, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562725

RESUMO

High-energy-conversion Bi2Te3-based thermoelectric generators (TEGs) are needed to ensure that the assembled material has a high value of average figure of merit (ZTave). However, the inferior ZTave of the n-type leg severely restricts the large-scale applications of Bi2Te3-based TEGs. In this study, we achieved and reported a high peak ZT (1.33) of three-dimensional (3D)-printing n-type Bi2Te2.7Se0.3. In addition, a superior ZTave of 1.23 at a temperature ranging from 300 to 500 K was achieved. The high value of ZTave was obtained by synergistically optimizing the electronic- and phonon-transport properties using the 3D-printing-driven defect engineering. The nonequilibrium solidification mechanism facilitated the multiscale defects formed during the 3D-printed process. Among the defects formed, the nanotwins triggered the energy-filtering effect, thus enhancing the Seebeck coefficient at a temperature range of 300-500 K. The effective scattering of wide-frequency phonons by multiscale defects reduced the lattice thermal conductivity close to the theoretical minimum of ∼0.35 W m-1 k-1. Given the advantages of 3D printing in freeform device shapes, we assembled and measured bionic honeycomb-shaped single-leg TEGs, exhibiting a record-high energy conversion efficiency (10.2%). This work demonstrates the great potential of defect engineering driven by selective laser melting 3D-printing technology for the rational design of advanced n-type Bi2Te2.7Se0.3 thermoelectric material.

2.
ACS Appl Mater Interfaces ; 10(26): 22401-22407, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893540

RESUMO

P-type lead telluride (PbTe) emerged as a promising thermoelectric material for intermediate-temperature waste-heat-energy harvesting. However, n-type PbTe still confronted with a considerable challenge owing to its relatively low figure of merit ZT and conversion efficiency η, limiting widespread thermoelectric applications. Here, we report that Ga-doping in n-type PbTe can optimize carrier concentration and thus improve the power factor. Moreover, further experimental and theoretical evidence reveals that Ga-doping-induced multiphase structures with nano- to micrometer size can simultaneously modulate phonon transport, leading to dramatic reduction of lattice thermal conductivity. As a consequence, a tremendous enhancement of ZT value at 823 K reaches ∼1.3 for n-type Pb0.97Ga0.03Te. In particular, in a wide temperature range from 323 to 823 K, the average ZTave value of ∼0.9 and the calculated conversion efficiency η of ∼13% are achieved by Ga doping. The present findings demonstrate the great potential in Ga-doped PbTe thermoelectric materials through a synergetic carrier tuning and multiphase engineering strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...