Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172142, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583610

RESUMO

This study investigates the effects of anthropogenic nitrogen oxide (NOx) mitigation reduction on secondary organic aerosol (SOA) formation from monoterpene and sesquiterpene precursors across Europe, using the three-dimensional (3-D) Chemical Transport Model (CTM) CHIMERE. Two SOA mechanisms of varying complexity are employed: the GENOA-generated Biogenic Mechanism (GBM) and the Hydrophobic/Hydrophilic Organic mechanism (H2O). GBM is a condensed SOA mechanism generated by automatic reduction from near-explicit chemical mechanisms (i.e., the Master Chemical Mechanism - MCM and the peroxy radical autoxidation mechanism - PRAM) using the GENerator of Reduced Organic Aerosol Mechanisms version 2.0 (GENOA v2.0). Conversely, the H2O mechanism is developed primarily based on experimental data, with simplified chemical pathways and SOA formation yields reflecting those from chamber experiments. In the 3-D simulations conducted for the summer of 2018 over Europe, the implementation of GBM significantly improved the model's performance in comparison to simulations using the H2O mechanism, yielding results more consistent with measured aerosol concentrations extracted from the EBAS database. In response to NOx emission mitigation, simulated SOA concentrations increase with GBM but decrease when using the H2O mechanism, unless a highly oxygenated molecules (HOMs) formation scheme is incorporated. The SOA composition becomes more oxidized and concentrations elevate after NOx reduction, particularly in simulations using GBM. These higher concentrations are likely due to enhanced reaction rates of organic peroxy radicals (RO2) with HO2, resulting in more oxidized products from monoterpene degradation that favors HOM formation. The results suggest that detailed SOA mechanisms including autoxidation are necessary for accurate predictions of SOA concentrations in 3-D modeling.

2.
J Org Chem ; 86(20): 14131-14143, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494850

RESUMO

A tandem Michael addition-cyclization of nitroalkenes with 1,3-dicarbonyl compounds was developed using phase transfer catalyst (PTC), allowing for the synthesis of polysubstituted-[4,5]-dihydrofuran in high yields. A wide range of substrates were demonstrated by this one-step process. Meanwhile, nitro group was substituted to form corresponding nitrite ion detected in the aqueous phase providing a reasonable pathway for denitrating poisonous and explosive nitro-containing compounds. The proposed mechanism was also supported by our DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...