Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 25(4): 701-708, Nov. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216238

RESUMO

Biogenic manganese oxides (BioMnOx) have been found all over the world, and most of them were formed by Mn(II)-oxidizing bacteria (MnOB). In this study, a MnOB designated as FF-1 was isolated from marine surface sediments in the Bohai Sea, China. This strain was identified as Bacillus sp. and can tolerate more than 5% salinity. It can grow in the presence of 0–7 mM Mn(II) and pH range from 5.0 to 7.0. When the initial Mn(II) was 5 mM, the percentage of Mn(II) oxidation reached the highest value of 16% after 10 days of incubation. The initial pH (5.0 to 7.0) affected the percentage of Mn(II) oxidation, but the ability of the strain FF-1 to self-regulate pH resulted in the final pH being almost 7.6. The removal of Mn(II) by the strain FF-1 involves extracellular and intracellular adsorption as well as Mn(II) oxidation. Intracellular Mn adsorption contributed a small part to the total Mn removal, and extracellular adsorption was dominant in the initial stage of Mn removal. The solid products after Mn removal were a mixture of MnOx and MnCO3. The layered MnOx formed in the extracellular space could be easily collected and used for adsorption and oxidation of pollutants.(AU)


Assuntos
Humanos , Biodegradação Ambiental , Oxidação , Manganês , Bacillus subtilis , Microbiologia , China
2.
Int Microbiol ; 25(4): 701-708, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687202

RESUMO

Biogenic manganese oxides (BioMnOx) have been found all over the world, and most of them were formed by Mn(II)-oxidizing bacteria (MnOB). In this study, a MnOB designated as FF-1 was isolated from marine surface sediments in the Bohai Sea, China. This strain was identified as Bacillus sp. and can tolerate more than 5% salinity. It can grow in the presence of 0-7 mM Mn(II) and pH range from 5.0 to 7.0. When the initial Mn(II) was 5 mM, the percentage of Mn(II) oxidation reached the highest value of 16% after 10 days of incubation. The initial pH (5.0 to 7.0) affected the percentage of Mn(II) oxidation, but the ability of the strain FF-1 to self-regulate pH resulted in the final pH being almost 7.6. The removal of Mn(II) by the strain FF-1 involves extracellular and intracellular adsorption as well as Mn(II) oxidation. Intracellular Mn adsorption contributed a small part to the total Mn removal, and extracellular adsorption was dominant in the initial stage of Mn removal. The solid products after Mn removal were a mixture of MnOx and MnCO3. The layered MnOx formed in the extracellular space could be easily collected and used for adsorption and oxidation of pollutants.


Assuntos
Bacillus , Poluentes Ambientais , Bacillus/genética , Bactérias , Manganês , Naftalenos , Oxirredução , Óxidos
3.
Mar Genomics ; 60: 100888, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34627548

RESUMO

A previously unreported tellurate reducing capacity was found in a marine bacteria Sporosarcina sp. Te-1, which was isolated from Bohai Sea, China. In this work, the complete genome of strain Te-1 was obtained using hybrid Nanopore/Illumina assemble method. A circular chromosome of 4,297,762 bp with a G + C content of 44.44 mol% was assembled. The genome harbors 4530 predicted protein-encoding genes, 71 tRNA genes, and 9 rRNA genes. Genes involved in tellurate metabolism, urea metabolism and salinity adaption were identified. These metabolic features reveal the genetic basis for the tellurate metabolism in the marine environment, which help us to further understand the marine tellurium biogeochemical cycle.


Assuntos
Sporosarcina , Telúrio , Bactérias , Composição de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...