Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451638

RESUMO

Cobalt 2-methylimidazole (ZIF-67) have abundant nitrogen and cobalt elements, which can be used as an excellent precursor for catalyst synthesis. In this study, a new Co, N co-doped carbon-based catalyst (Co-N-BC) was synthesized from ZIF-67 and biochar, which can significantly improve the degradation of 4-nitrophenol (4-NP) in catalytic ozonation. The mineralization rate of 4-NP achieves 65.8% within 60 min. The catalyst showed high recycling stability in the four cycles of reuse experiment. Different operating parameters, such as solution pH, the concentration of O3 and 4-NP, have been studied in the Co-N-BC catalytic ozonation. O3, O2-· and ·OH are determined as the main reactive species for 4-NP degradation, and ·OH is especially responsibly for 4-NP mineralization. The existence of inorganic ions, such as Cl-, NO2-, CO32- and PO43-, all significantly inhibited the degradation of 4-NP to different extend, respectively. The effect of substituent on a series of organics with similar structure of 4-NP was also investigated in Co-N-BC catalytic ozonation. This study provides a new composite material for heterogeneous catalytic ozonation, which is very promising in 4-NP contained complex wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Ozônio/química , Poluentes Químicos da Água/análise , Catálise , Cobalto/química
2.
Acta Biomater ; 157: 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481502

RESUMO

Hyperkalemia is a common metabolic problem in patients with chronic kidney disease. Although oral medications and hemodialysis are clinically applied for lowering serum potassium, the intrinsic limitations encourage alternative therapy in the trend of adsorbent-based miniaturized blood purification devices. Cells serve as the biological K+ storage units that accumulate K+ through multiple mechanisms. Inspired by cells, our strategy aims at favorable permeation and enrichment of K+ in the microsphere. We incorporate cation-affinitive groups into core-shell structures with submicron-sized phase separation. These nano-spaced side-groups cooperate to form interlinked clusters, where crown ethers with Angstrom-scale ring for size-matched complexation, while ionic sulfonic acid groups for hydrophilicity and charge-buffering. The unique structure with such non-covalent interactions facilitates K+ for permeation across the shell and binding to the core while also ensuring mechanical strength and anti-swelling durability in biofluids. The microspheres exhibit high selectivity ratios of K+ (SK/Na, SK/Ca, SK/Mg up to 9.8, 21.6, and 17.7). As column adsorbents for hemoperfusion simulation, they effectively lower elevated K+ levels to the normal range (clearance rates up to 44.4%/45.3% for hyperkalemic human serum/blood). Blood compatibility tests show low protein adsorption, preferable hemocyte compatibility, and anticoagulation property in vitro. This promising strategy has clinical potential for hyperkalemia in high-risk patients. STATEMENT OF SIGNIFICANCE: Hyperkalemia (serum potassium >5 mmol/L) is a common complication in chronic renal failure patients. The limitations of existing treatments prompt a shift to wearable artificial kidney technology for clinical convenience and efficacy. Existing treatments have limitations, and we turn to adsorbent-based miniaturized blood purification devices in the prospect of wearable artificial kidney technology. There exists a lack of ion-specific adsorbents applied in extracorporeal circuits to redress electrolyte imbalances like hyperkalemia. Inspired by cells, we aim at the favorable permeation and enrichment of K+ by microspheres. The microspheres have a microphase-isolated core-shell structure, whose nano-spaced groups form cation-affinitive clusters. Selective K+ removal and blood compatibility are achieved. We expect this strategy to enlighten alternative hyperkalemia therapy for these high-risk patients.


Assuntos
Hiperpotassemia , Humanos , Hiperpotassemia/tratamento farmacológico , Potássio/metabolismo , Potássio/uso terapêutico , Microesferas , Diálise Renal/efeitos adversos
3.
Chemosphere ; 296: 134071, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35216974

RESUMO

Advanced oxidation processes (AOPs) are widely used as efficient technologies to treat highly toxic and harmful substances in wastewater. Taking the most representative aromatic compounds (monosubstituted benzenes, substituted phenols and heterocyclic compounds) as examples, this paper firstly introduces their structures and the structural descriptors studied in AOPs before, and the influence of structural differences in AOPs with different reactive oxygen species (ROS) on the degradation rate was discussed in detail. The structure-activity relationship of pollutants has been previously analyzed through quantitative structure-activity relationship (QSAR) model, in which ROS is a very important influencing factor. When electrophilic oxidative species attacks pollutants, aromatic compounds with electron donating groups are more favorable for degradation than aromatic compounds with electron donating groups. While nucleophilic oxidative species comes to the opposite conclusion. The choice of advanced oxidation processes, the synergistic effect of various active oxygen species and the used catalysts will also change the degradation mechanism. This makes the structure-dependent activity relationship uncertain, and different conclusions are obtained under the influence of various experimental factors.


Assuntos
Poluentes Químicos da Água , Compostos Orgânicos , Oxirredução , Relação Quantitativa Estrutura-Atividade , Espécies Reativas de Oxigênio , Águas Residuárias , Poluentes Químicos da Água/análise
4.
J Mater Chem B ; 10(14): 2534-2543, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34786576

RESUMO

For patients who are suffering from liver dysfunction or metabolic obstruction, excessive bilirubin (BIL) in their bodies may cause jaundice with irreversible cerebral injury. Traditional exchange transfusion and photodynamic therapy pose a risk of serious adverse reactions or limited curative effects. Therefore, as a generally used treatment, hemoperfusion (HP) purifies patients' blood with solid adsorbents. However, the development of clinical BIL absorbents is greatly impeded by low selectivity and unsatisfactory blood compatibility. Herein, inspired by oviparity, we propose BIL-imprinted poly(acrylic acid-co-sodium p-styrenesulfonate)-reduced graphene oxide (PAA-SS-rGO@BIL) hydrogel beads as BIL adsorbents via self-sacrificing micro-reactors. In the micro-reactors, cross-linked polymerization is achieved and a solidified gel is formed. The received hydrogel beads show outstanding selective adsorption capabilities toward BIL due to the recognition sites, and π-π and hydrophobic interactions. Such hydrogel beads possess superior blood compatibility owing to their bioinspired heparin-mimicking gel structure. Simulated BIL selective adsorption experiments in vitro demonstrate that the BIL concentrations in the plasma of a patient with severe jaundice can be restored to a moderate level within 3 hours. Therefore, hydrogel beads offer new options for clinical BIL adsorption.


Assuntos
Bilirrubina , Hemoperfusão , Adsorção , Heparina/química , Humanos , Hidrogéis
5.
ACS Appl Mater Interfaces ; 13(27): 32316-32331, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210131

RESUMO

Pathogenic bacterial infection has become a serious medical threat to global public health. Once the skin has serious defects, bacterial invasion and the following chain reactions will be a thorny clinical conundrum, which takes a long time to heal. Although various strategies have been used to eradicate bacteria, the treatment which can simultaneously disinfect and regulate the infection-related host responses is rarely reported. Herein, inspired by the host microenvironment, a photoenhanced dual-functional nanomedicine is constructed (Hemin@Phmg-TA-MSN) for localized bacterial ablation and host microenvironment modulation. The "NIR-triggered local microthermal therapy" and positively charged surface endow the nanomedicine with excellent bacterial capture and killing activities. Meanwhile, the nanomedicine exhibits broad-spectrum reactive oxygen species (ROS) scavenging activity via the synergistic effect of hemin and tannic acid with photoenhanced electron and hydrogen transfers. Furthermore, the in vivo experiments demonstrate that the dual-functional nanomedicine not only presents robust bacterial eradication capability, but also triggers the oxidative stress and inflammatory microenvironment regulation. The work not only shows a facile and effective way for infected wound management but also provides a new horizon for designing novel and efficient anti-infection therapy shifting focus from bacteria treatment to host microenvironment modulation.


Assuntos
Microambiente Celular/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Raios Infravermelhos , Nanomedicina/métodos , Cicatrização/efeitos da radiação , Animais , Feminino , Camundongos
6.
Environ Sci Technol ; 55(8): 5422-5434, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33720690

RESUMO

Conventional Cu-ZSM-5 and special Cu-ZSM-5 catalysts with diverse morphologies (nanoparticles, nanosheets, hollow spheres) were synthesized and comparatively investigated for their performances in the selective catalytic reduction (SCR) of NO to N2 with ammonia. Significant differences in SCR behavior were observed, and nanosheet-like Cu-ZSM-5 showed the best SCR performance with the lowest T50 of 130 °C and nearly complete conversion in the temperature range of 200-400 °C. It was found that Cu-ZSM-5 nanosheets [mainly exposed (0 1 0) crystal plane] with abundant mesopores and framework Al species were favorable for the formation of high external surface areas and Al pairs, which influenced the local environment of Cu. This motivated the preferential formation of active copper species and the rapid switch between Cu2+ and Cu+ species during NH3-SCR, thus exhibiting the highest NO conversion. In situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicated that the Cu-ZSM-5 nanosheets were dominated by the Eley-Rideal (E-R) mechanism and the labile nitrite species (NH4NO2) were the crucial intermediates during the NH3-SCR process, while the inert nitrates were more prone to generate on Cu-ZSM-5 nanoparticles and conventional one. The combined density functional theory (DFT) calculations revealed that the decomposition energy barrier of nitrosamide species (NH2NO) on the (0 1 0) crystal plane of Cu-ZSM-5 was lower than those on (0 0 1) and (1 0 0) crystal planes. This study provides a strategy for the design of NH3-SCR zeolite catalysts.


Assuntos
Amônia , Zeolitas , Catálise , Cobre , Oxirredução
7.
Bioact Mater ; 6(2): 543-558, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32995679

RESUMO

Patients with chronic kidney disease are at high risk of hyperkalemia that is associated with various life-threatening complications. Treatments primarily rely on orally administered potassium binding agents, along with low curative effects and various side effects. Herein, direct serum potassium uptake was realized via zeolite-heparin-mimicking-polymer hybrid microbeads. The preparation process involved the synthesis of the heparin-mimicking polymer via the in situ cross-linking polymerization of acrylic acid and N-vinylpyrrolidone in polyethersulfone solution, the fabrication of microbeads via zeolite-mixing, electro-spraying and phase-inversion, and the subsequent aqueous-phase modifications based on ion-exchange and metal-leaching. An ultra-high (about 88%) amount of zeolite could be incorporated and well locked inside the polymer matrix. Potassium uptake capability was verified in water, normal saline and human serum, showing high selectivity and fast adsorption. The microbeads exhibited satisfying blood compatibility, negligible hemolysis ratio, prolonged clotting time, inhibited contact activation, and enhanced antifouling property toward serum proteins and cells. The proposed approach toward zeolite-heparin-mimicking-polymer hybrid microbeads provided a cheap, efficient and safe treatment protocol of hyperkalemia for the high-risk patients.

8.
Angew Chem Int Ed Engl ; 59(21): 8016-8035, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31309678

RESUMO

Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .

9.
Chem Commun (Camb) ; 50(67): 9501-4, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25009834

RESUMO

A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.


Assuntos
Biocatálise , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Nanopartículas/química , Zeolitas/química , Álcoois Benzílicos/química , Cinética , Estereoisomerismo , Especificidade por Substrato
10.
Nanoscale Res Lett ; 5(1): 124-9, 2009 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20652098

RESUMO

Highly dispersed colloidal gold (Au) nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) equipped with an energy dispersion X-ray spectrometer (EDX). UV-vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced into the metallic state at room temperature with the glow discharge plasma. TEM images showed that Au nanoparticles were highly dispersed. The size of colloidal Au nanoparticles could be easily tuned in the nanometer range by adjusting the initial concentration of HAuCl4 solution. Moreover, the as-synthesized Au colloids (dav = 3.64 nm) exhibited good catalytic activity for glucose oxidation. The nucleation and growth of colloidal Au particles under the influence of the plasma was closely related with the high-energy electrons generated by glow discharge plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...