Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 872839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720528

RESUMO

Alfalfa (Medicago sativa L.), a kind of high-quality perennial legume forage, is widely distributed in the northern regions of China. In recent years, low temperatures have frequently occurred and limited alfalfa productivity and survival in early spring and late fall. However, the underlying molecular mechanisms of alfalfa response to cold tolerance are not well-documented. In this study, dormancy and non-dormancy alfalfa standard varieties were characterized under low-temperature stress. Our analysis revealed that plant height of the dormancy genotype was strongly inhibited by low temperature; flavonoids content, and higher expression of flavonoids biosynthesis genes (chalcone synthase, leucoanthocyanidin dioxygenase, and flavonoid 3'-monooxygenase) may play essential roles in response to low-temperature stress in dormancy genotype alfalfa. Further analyses revealed that receptor-like kinase family genes (such as cysteine-rich RLK10, lectin protein kinase, and S-locus glycoprotein like kinase), RNA and protein synthesis genes (RNA polymerases, ribosomal protein, and protein phosphatase 2C family protein), and proteasome degradation pathway genes (such as F-box family protein, RING/U-box superfamily protein, and zinc finger family protein) also highly upregulated and contributed to cold tolerance phenotype in dormancy genotype alfalfa. This will provide new insights into future studies for cold tolerance in alfalfa and offer new target genes for further functional characterization and genetic improvement of alfalfa.

2.
Eur J Pharmacol ; 821: 1-10, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247613

RESUMO

Lariciresinol (LA) is one of the main active ingredients in many traditional medicinal plants such as Patrinia, and has the role of anti-liver cancer. However, the precise mechanisms are unclear. This study investigated the molecular mechanisms of LA against HepG2 cells. LA anti-tumor activity was assessed with the CCK-8, Ki-67, and immunofluorescence staining. Cells apoptotic ratio was evaluated by Annexin V/PI double-staining assay. A proteomic approach was used to identify differentially expressed proteins after LA treatment. JC-1 staining was carried out to detect the mitochondrial membrane potential (ΔΨm), and the Western blot analysis was used to analyse the apoptosis-associated proteins. Our results suggested that LA significantly suppressed the viability of HepG2 cells. The CCK-8 and Ki-67 expression indicated dose-dependent decreases in cell proliferation. Flow cytometry analysis showed that LA exhibited a apoptosis-inducing effect. The proteomic study observed the presence of apoptosis-associated proteins and mitochondrial dysfunction in HepG2 cells after LA-treatment. Further analysis showed that LA could trigger the mitochondrial-mediated apoptosis pathway, based on a decrease in ΔΨm; deliver of cytochrome c; activation of caspase-9/-3 and poly(ADP-ribose) polymerase; and decrease of the proportion of Bcl-2/Bax. Collectively, our studies found that LA exhibits significant cytotoxic effects by inhibiting cell proliferation, inducing apoptosis, possibly via activation of the mitochondrial-mediated apoptosis pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Furanos/farmacologia , Lignanas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Hep G2 , Humanos , Mitocôndrias/metabolismo , Proteômica , Transdução de Sinais/efeitos dos fármacos
3.
Neurosci Lett ; 636: 241-247, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865879

RESUMO

Polyunsaturated fatty acids (PUFAs) have neuroprotective effects against ischemic brain diseases. The newly discovered potassium channel "TREK-1" is a promising target for therapies against neurodegeneration. Arachidonic acid (AA) is an n-6 PUFA, as well as a potent TREK-1 activator. We previously showed that TREK-1 is expressed at high levels in astrocytes. However, the effect of AA on astrocytes in ischemia remains unknown. Here, we assessed the effects of 3-30µM AA on astrocyte apoptosis, glutamate uptake, and expression of the astrocytic glutamate transporter 1 (GLT-1) and TREK-1 under different conditions. Under normal conditions, 3-30µM AA showed no effect on astrocytic apoptosis or TREK-1 expression, whereas glutamate uptake decreased significantly and its change paralleled the decreased expression of GLT-1. When astrocytes were subjected to 4h of oxygen-glucose deprivation (OGD), 10µM AA markedly alleviated OGD-induced cell death, recovering from 63.50±1.90% to 82.96±4.63% of the control value. AA also rescued the decreased glutamate uptake and increased mRNA, as well as protein levels of GLT-1 and TREK-1. Our results provide new evidence of a protective effect of AA on astrocytes under OGD conditions, suggesting that a low concentration of AA may protect against brain ischemic diseases.


Assuntos
Ácido Araquidônico/farmacologia , Astrócitos/efeitos dos fármacos , Glucose/metabolismo , Oxigênio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...