Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.904
Filtrar
1.
Asian J Surg ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181855
2.
Angew Chem Int Ed Engl ; : e202414259, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185587

RESUMO

Pathogenic infectious diseases have persistently posed significant threats to public health. Phototheranostics, which combines the functions of diagnostic imaging and therapy, presents an extremely promising solution to block the spread of pathogens as well as the outbreak of epidemics owing to its merits of a wide-spectrum of activity, high controllability, non-invasiveness, and difficult to acquire resistance. Among multifarious phototheranostic agents, second near-infrared (NIR-II, 1000-1700 nm) aggregation-induced emission luminogens (AIEgens) are notable by virtue of their deep penetration depth, excellent biocompatibility, balanced radiative and nonradiative decay and aggregation-enhanced theranostic performance, making them an ideal option for combating pathogens. This minireview provides a systematical summary of the latest advancements in NIR-II AIEgens with emphasis on the molecular design and nanoplatform formulation to fulfill high-efficiency in treating bacterial and viral pathogens, classified by disease models. Then, the current challenges, potential opportunities, and future research directions are presented to facilitate the further progress of this emerging field.

3.
Front Psychol ; 15: 1466709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188869

RESUMO

[This corrects the article DOI: 10.3389/fpsyg.2024.1275142.].

4.
Phys Chem Chem Phys ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189163

RESUMO

In this paper, we innovatively stack multiple resonant units of photoconductive silicon to design an ultra-broadband metamaterial absorber. By manipulating the conductivity of the silicon with a pump beam, adjustments are made to the amplitude of the wide absorption spectrum spanning 6.6 THz, enabling functional switching from total reflection to near-perfect ultra-broadband absorption. By integrating vanadium dioxide as an intermediary layer, a dual-mode switchable absorber is realized, offering dual control functionalities. Temperature changes enable the absorber to switch between dual-band absorption and ultra-broadband absorption, while variations in pump beam intensity allow for further amplitude adjustments within the absorption spectrum. Impedance matching theory and near-field analysis provide the necessary physical foundation for understanding broadband absorption. Structural parameters, incident angle, and polarization angle of the incident electromagnetic waves are also studied to demonstrate the device's robustness. Our proposed absorbers not only greatly broaden the absorption bandwidth of silicon-based absorbers, but also offer versatility, polarization insensitivity, and robustness over a wide range of incidence angles. Moreover, our design ideas are useful for broadening the bandwidth and enhancing absorption, which enables wider applications in ultra-broadband terahertz absorption and promises extensive prospects.

5.
Bioorg Chem ; 151: 107701, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39154520

RESUMO

Four new diterpenoid tropolones, salvirrddones A-D (1-4), and four new icetexanes, salvirrddices A-D (9-12), along with thirteen new 11,12-seco-norabietane diterpenoids, salvirrddnor A-M (14-24, 31, 32) and sixteen known compounds (5-8, 13, 25-30, 33-37), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Their structures were elucidated by comprehensive spectroscopic analyses, quantum chemical calculations, and X-ray crystallography. Structurally, compounds 1-8 represent a class of rare natural products featuring a unique cyclohepta-2,4,6-trienone moiety with diterpenoid skeletons. Bioassays showed that only diterpenoid tropolones 3, 5, 6, and 7 exhibited significant activity against several human cancer cell lines with IC50 values ranging from 3.01 to 11.63 µM. Additionally, 3 was shown to inhibit Hep3B cell proliferation, block the G0/G1 phase of the cell cycle, induce mitochondrial dysfunction and oxidative stress, promote apoptosis, as well as inhibit migration and invasion in vitro. Meanwhile, 3 demonstrated anti-proliferative, pro-apoptotic, and migration-inhibitory effects in the Hep3B xenograft zebrafish model in vivo. Network pharmacological analysis and molecular docking results suggested that 3 may treat hepatocellular carcinoma (HCC) through the PI3K-Akt signaling pathway, as well as by binding PARP1 and CDK2 targets. Overall, the present results extremely expand the repertoire of diterpenoids from natural products and may provide a novel chemical scaffold for the discovery of new antitumor drugs.

6.
Int J Oncol ; 65(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155873

RESUMO

Following the publication of the above article, a concerned reader drew to the authors' attention that, among Figs. 1D, 2A and 4B, certain of the control western blots had been re­used in different blots. The authors have retrieved and re­examined their original data, and were able to identify the correct control western blots where the data had been inadvertently duplicated in the affected original figures. The revised versions of Figs. 2 and 4, now featuring the correct control western blots, are shown in the subsequent two pages. The authors regret that the data in question featured in the original article had been re­used, and thank the Editor of International Journal of Oncology for granting them the opportunity to publish this corrigendum. All the authors agree with the publication of this corrigendum; furthermore, they apologize to the readership of the journal for any inconvenience caused. [International Journal of Oncology 46: 1205­1213, 2015; DOI: 10.3892/ijo.2014.2800].

7.
Basic Res Cardiol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158697

RESUMO

Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39145632

RESUMO

BACKGROUND: The aim of this study was to analyze the clinical significance of cerebrospinal fluid (CSF) cytokines in hemophagocytic lymphohistiocytosis associated with central nervous system (CNS-HLH). METHODS: CSF cytokine levels, including interferon (IFN)-γ, soluble CD25 (sCD25), interleukin (IL)-6, IL-10, IL-18, and CXCL9 were measured at disease onset and during the treatment. Five newly diagnosed patients with demyelination disease were enrolled for comparison. RESULTS: Sixty-five samples from 36 patients (13 in the CNS group and 23 in the non-CNS group) were detected. Levels of CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the non-CNS group (P=0.038, <0.001, <0.001, 0.005, and <0.001), and levels of CSF sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the demyelination group (P=0.001, 0.008, 0.004, and 0.003). There was no significant difference in IL-6 levels among the 3 groups (P=0.339). CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 could assist in diagnosing CNS-HLH. The diagnostic efficiency of CSF sCD25, IL-10, and CXCL9 was better, with a cutoff value of 154.64, 1.655, and 19.54 pg/mL, respectively. The area under the curve was >0.9, with sensitivity and specificity >80%. Correlation analysis suggested that in the CNS group, IFN-γ levels in CSF and serum correlated positively (R=0.459, P=0.007), while there was no correlation between CSF CXCL9 and serum IFN-γ (P=0.915). CONCLUSIONS: CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 levels were significantly higher in HLH patients with CNS involvement than those without and could predict HLH patients with CNS involvement. CSF CXCL9 might be a more sensitive biomarker to CNS-HLH than IFN-γ, while CSF IL-6 does not seem to play a vital role.

9.
Nat Metab ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138340

RESUMO

Dietary haem iron intake is linked to an increased risk of type 2 diabetes (T2D), but the underlying plasma biomarkers are not well understood. We analysed data from 204,615 participants (79% females) in three large US cohorts over up to 36 years, examining the associations between iron intake and T2D risk. We also assessed plasma metabolic biomarkers and metabolomic profiles in subsets of 37,544 (82% females) and 9,024 (84% females) participants, respectively. Here we show that haem iron intake but not non-haem iron is associated with a higher T2D risk, with a multivariable-adjusted hazard ratio of 1.26 (95% confidence interval 1.20-1.33; P for trend <0.001) comparing the highest to the lowest quintiles. Haem iron accounts for significant proportions of the T2D risk linked to unprocessed red meat and specific dietary patterns. Increased haem iron intake correlates with unfavourable plasma profiles of insulinaemia, lipids, inflammation and T2D-linked metabolites. We also identify metabolites, including L-valine and uric acid, potentially mediating the haem iron-T2D relationship, highlighting their pivotal role in T2D pathogenesis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39140693

RESUMO

Nanoparticle surfactants assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Understanding and actively tuning the mechanical properties of the generated membranes, which comprise the nanoparticle surfactants, are of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we present electrostatic interaction-driven fabrication of freestanding and close-packed SiO2 surfactant membranes with diameters up to 0.10 mm. The membranes of 20-30 nm in thickness were spanned over holes with a diameter of 2 µm, exhibiting a Young's modulus ranging from 1.5 to 5.9 GPa. The controllable elastic properties of the fabricated nanoparticle surfactant membranes are found to be dictated by the strength of interactions between nanoparticles and ligands, between ligands and ligands, and between the nanoparticle surfactants. The results present an efficient approach for fabricating and developing nanoparticle surfactant-based large-area, freestanding, and ultrathin membranes with finely tunable mechanical properties on a large scale.

11.
Chem Sci ; 15(32): 12957-12963, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39148766

RESUMO

Concurrent near-infrared-II (NIR-II) fluorescence imaging (FLI) and photoacoustic imaging (PAI) holds tremendous potential for effective disease diagnosis owing to their combined benefits and complementary features, in particular on the basis of a single molecule. However, the simultaneous guarantee of high-quality NIR-II FLI and PAI is recognized to be challenging impeded by the competitive photophysical processes at the molecular level. Herein, a simple organic fluorophore, namely T-NSD, is finely engineered with facile synthetic procedures through delicately modulating the rigidity and electron-withdrawing ability of the molecular acceptor. The notable advantages of fabricated T-NSD nanoparticles include a large Stokes shift, intense fluorescence emission in the NIR-II region, and anti-quenching properties in the aggregated states, which eventually enable the implementation of dual-modal NIR-II FLI/PAI in a 4T1 tumor-xenografted mouse model with reliable performance and good biocompatibility. Overall, these findings present a simple strategy for the construction of NIR-II optical agents to allow multimodal disease diagnosis.

12.
J Phys Chem Lett ; : 8650-8659, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151150

RESUMO

This work systematically studied thermocatalytic and photocatalytic pathways of formaldehyde degradation and H-assisted O2 reduction over a Pt13/anatase-TiO2(101) composite via DFT calculations together with constrained molecular dynamics (MD) simulations. We show that photocatalytic O2 reduction on Pt/TiO2 can directly generate •OH radicals (*O2 → *OOH → •OH) via two hydrogenation steps with small barriers, and the product selectivity (*H2O2 or •OH) is decided by the relative position between catalyst Fermi level and •OH/*H2O2 redox potential (theoretical determination of 0.07 V referencing to the SHE). Such a novel reaction channel was furthermore validated at the liquid-solid interface via constrained MD simulations and experimental electron paramagnetic resonance detections, and a wide range of H resources, e.g., *HCHO, *HCO, *H (H+ + e-), can always drive the direct •OH generation. The additional portion of e--triggered •OH radicals are prone to diffuse into solution or the TiO2 surface and furthermore cooperate with the conventional h+-driven photooxidations.

13.
J Mater Chem B ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150370

RESUMO

In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.

14.
Front Cell Infect Microbiol ; 14: 1430302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099883

RESUMO

Introduction: Human cytomegalovirus (HCMV) is the most common viral infection seen in newborns. The major route of transmission for acquired human cytomegalovirus infection is breast milk from mothers who are HCMV seropositive to the infants. Thus, a rapid, economical, and simple method to perform HCMV test in breast milk is crucial and necessary for preventing acquired HCMV infection, especially in underdeveloped regions with limited laboratory resources. Methods: In this study, an effective technique for the detection of HCMV was constructed by combining multienzyme isothermal rapid amplification (MIRA) and lateral flow chromatography strip (LFD). Primers for the conserved HCMV sequence UL83 were utilized for MIRA-LFD testing. Results: Our results showed that the entire MIRA reaction could be completed in 12 minutes at 37°C, and LFD outcomes could be observed visibly after 10 minutes. The detection sensitivity of this method reached 50 copy/µl. Samples of breast milk were examined to compare MIRA-LFD and conventional qPCR. The accuracy of MIRA-LFD was 100%. Discussion: The straightforward, rapid, economic features of the test can provide the significant advantages for the prevention of breast milk-acquired cytomegalovirus infection, particularly in resource-limited locations with high seroprevalence of cytomegalovirus.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Leite Humano , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Humanos , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Leite Humano/virologia , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Feminino , Recém-Nascido , Fatores de Tempo
15.
Phytomedicine ; 133: 155908, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39094439

RESUMO

OBJECTIVE: Sarcopenia, as a condition of muscle mass loss and functional decline typically diagnosed in elderly individuals, severely affects human physical activity, metabolic homeostasis, and quality of life. Gui Qi Zhuang Jin Decoction (GQZJD), an approved hospital-based prescription with years of clinical application, has been demonstrated to have a notable therapeutic effect on sarcopenia. However, its potential mechanism of action in the treatment of sarcopenia remains uncertain. METHODS: Ultra-performance liquid chromatography paired with Q Exactive™ HF-X mass spectrometry (UPLC-QE-MS) was used to identify the ingredients of GQZJD. Subsequently, GQZJD observed the basic growth and muscles of the sarcopenia mouse, while the behavioral indicators were also tested. Muscle histopathology and serum oxidative stress biochemicals were also detected, and mitochondrial function and energy metabolism-related indicators in the gastrocnemius muscle were examined. Then, a metabolomics strategy was applied to predict possible pathways involving mitochondria by which GQZJD could improve sarcopenia. Finally, quantitative real-time polymerase chain reaction and western blot analyses were carried out to validate the effects of GQZJD on sarcopenia-induced mitochondrial dysfunction, together with uncovering the associated mechanisms. RESULTS: Twenty-seven ingredients absorbed into the blood (IAIBs) of GQZJD were identified using UPLC-QE-MS, which were regarded as the main active ingredients behind its sarcopenia treatment effects. GQZJD administration increased the body weight, gastrocnemius muscle mass, and autonomic activity, mitigated muscle tissue morphology and pathology; and alleviated the oxidative stress levels in sarcopenia mice. Treatment with GQZJD also decreased the mitochondrial reactive oxygen species level and serum lipid peroxide Malonaldehyde concentration. and increased the mitochondrial membrane potential, adenosine triphosphate level, 8­hydroxy-2-deoxyguanosine content, mitochondrial DNA copy number, and the mitochondrial fission factor dynamin-related protein 1. Non-targeted metabolomics suggested that the sarcopenia therapeutic effect of GQZJD on sarcopenia may occur through the glycerophospholipid metabolism, choline metabolism in cancer, phenylalanine metabolism and tyrosine metabolism pathways, implying an association with AMP-activated protein kinase (AMPK) and related signals. Further, the molecular docking results hinted that AMPK performed well in terms of binding energy with the 27 IAIBs of GQZJD (average binding energy, -7.5 kcal/mol). Finally, we determined that GQZJD significantly activated the key targets of the AMPK/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis.. CONCLUSIONS: Our results demonstrated that GQZJD ameliorated d-galactose-induced sarcopenia by promoting the animal behaviours, facilitating mitochondrial function and restoring mitochondrial energy metabolism. with its effects mediated by the AMPK/PGC-1α/Nrf2 axis. Over all, GQZJD represents a promising therapeutic candidate that ameliorated sarcopenia in aging mice.

16.
Food Chem ; 460(Pt 2): 140675, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106806

RESUMO

A novel type of colorimetric/fluorescent nanopaper indicator has been developed from the melt-extruded poly (vinyl alcohol-co-ethylene) nanofibers with surface anchored metal-organic frameworks (MOFs) by an interfacial coordination strategy. Specifically, the fluorescein isothiocyanate molecules could be anchored to the nanofiber surface by nickel ions and co-assembled into a hydrophilic nanocoating via a dynamic water/alcohol solvent evaporation method. Interestingly, this hydrophilic surface enables fast adsorption of moistures and interaction with biological amine vapors, resulting a saffron cake-layer of MOF nanocrystals with ultra-sensitive colorimetric/fluorescent responses based on an alkaline pH/ammonia induced competitive coordination mechanism. Finally, these porous nanofibrous matrix and active nanocoating make the nano-paper an ultra-sensitive optical platform for in-situ monitoring of the shrimp freshness from mins to weeks. Therefore, this composite film shows great potential into advanced paper-based indicators for food quality control and safety in processing industry.

17.
Medicine (Baltimore) ; 103(31): e39076, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093767

RESUMO

RATIONALE: Both spinal muscular atrophy (SMA) and Phenylketonuria (PKU) are caused by biallelic pathogenic mutations. However, there has been no report on case who suffering from both diseases simultaneously. SMA mainly affects the motor function while PKU may have an impact on both the intelligence and motor function. But if only 1 disease is treated while neglecting the other, the treatment effect will be compromised. Here, for the first time, we report a case from China diagnosed with both these diseases and treated properly. PATIENT CONCERNS: A boy was admitted to the Children's Hospital Affiliated to Shandong University (Jinan, China) due to "limb weakness for 19 months" when he was 22 months old. Considering that the child's motor function development is delayed, we made a comprehensive examinations including inherited metabolic diseases and found a significantly increase of phenylalanine concentration in the blood which indicating PKU. Combined with his typical clinical manifestations of SMA, target capture sequencing followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) technologies were used for genetic confirmation. DIAGNOSES: SMA and PKU was confirmed. INTERVENTIONS: The child was treated with risdiplam and low phenylalanine formula immediately when he was diagnosed with both SMA and PKU. OUTCOMES: The child showed remarkable improvement in motor function and significant decrease of blood phenylalanine concentration after treatment. LESSONS: To our knowledge, this is the first reported case of SMA combined with PKU. This case expands our understanding of diagnosis for synchronous SMA and PKU and highlights the importance of comprehensive examinations and the utilizing of various genetic testing methods to make an accurate diagnosis of genetic diseases, which may help avoiding the progressive damage caused by certain genetic disease with insidious clinical symptoms.


Assuntos
Atrofia Muscular Espinal , Fenilcetonúrias , Humanos , Fenilcetonúrias/genética , Fenilcetonúrias/complicações , Fenilcetonúrias/diagnóstico , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/complicações , Lactente , Testes Genéticos/métodos , Fenilalanina/sangue , Fenilalanina/genética
18.
Adv Healthc Mater ; : e2401741, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113330

RESUMO

High level of C (ROS) within the tumor microenvironment (TME) not only damage tumor cells but also diminish the efficacy of immunogenic cell death (ICD) and the activity of tumor-infiltrating T lymphocytes, thereby limiting the effectiveness of immunotherapy. Therefore, precise modulation of ROS level is crucial to effectively eliminate tumor cells and activate ICD-induced immunotherapy. Here, an intelligent yolk shell nanoplatform (SPCCM) that features calcium carbonate shells capable of decomposing under acidic TME conditions, thereby releasing the natural antioxidant proanthocyanidins (PAs) and the photosensitizer Ce6 is designed. PAs scavenge ROS within tumors, extending the survival time of T lymphocytes, while Ce6, as an ICD inducer, generates high ROS concentrations upon laser irradiation, thus reaching the toxic threshold within tumor cells and inducing apoptosis. The resulting apoptotic cells serve as tumor-associated antigens, promoting dendritic cells (DCs) maturation, and activating ICD. By effectively neutralizing ROS in the TME, PAs sustainably reduce ROS level, thereby enhancing DCs activation and restoring antitumor immune cell activity suppressed by ROS (resulting in an eightfold increase in DCs activation). This study demonstrates effective synergistic effects between photodynamic therapy and immunotherapy by precisely modulating ROS level.

19.
J Vector Borne Dis ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113376

RESUMO

BACKGROUND OBJECTIVES: Aedes albopictu and Culex pipiens pallens are important vectors of many viruses and have had resistance to chemical pesticide. Spinosad is a selective biological insecticide to control urban mosquito. The aim of this study was to reveal the sublethal effects of spinosad on mosquito and provide reference basis for integrated mosquito management. METHODS: The toxicity of spinosad against Ae. albopictus and Cx. pipiens pallens were determined under laboratory conditions by exposing early third-instar larvae to different concentrations. RESULTS: The LC50 values of spinosad to Ae. albopictus and Cx. Pipiens pallens larvaes were 4.44×10-3 mg∙L-1 and 1.93×10-3 mg∙L-1 respectively after 72 h exposure. Spinosad at sublethal concentrations has many negative effects on Ae. albopictus and Cx. Pipiens pallens larval, pupae, adult and offspring eggs, including significantly reduced their larvae pupation rate by 51.37% and 58.47%, significantly prolonged pupae length by 21.43% and 16.18%, reduced female wing-spans by 20.19% and 14.89%, reduced male wing-spans by 3.84% and 7.54%, reduced female weight by 29.04% and 31.52%, reduced male weight by 7.47% and 9.07%, reduced female and male ratio by 51.98% and 45.21%, reduced individual egg-laying amount by 15.73% and 35.51%, in addition, offspring egg hatchability were dramatically decreased by 25.71% and 34.04%, egg periods were significantly prolonged by 14.42% and 62.82% respectively. No significant effect on larval period, pupae emergence rate, female bite rates were observed. INTERPRETATION CONCLUSION: These results suggest that spinosad might affect pest population dynamics significantly and is fairly expected to be a candidate biological pesticide for mosquito control.

20.
Am J Transl Res ; 16(7): 3298-3305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114690

RESUMO

OBJECTIVE: To analyze the isolation rate, prevalence trends, species distribution, and drug sensitivity of non-tuberculous mycobacteria (NTM) in Anhui Province, providing a reference for diagnosis and treatment strategies. METHODS: Specimens from suspected mycobacterial infection patients at Anhui Chest Hospital (including outpatients and inpatients) from January 2021 to December 2023 were cultured. Identified NTM strains were analyzed for species distribution and drug sensitivity. RESULTS: Of 10,519 mycobacteria strains cultured, 1,589 were NTM (15.11%). The top four species were Mycobacterium intracellulare (75.36%), Mycobacterium abscessus (11.78%), Mycobacterium kansasii (7.09%), and Mycobacterium avium (2.85%). NTM strains showed high sensitivity to amikacin and clarithromycin (≥90%) and significant sensitivity to rifabutin, moxifloxacin, and rifampicin (89.03%-79.61%). They exhibited high resistance to imipenem/cilastatin, sulfamethoxazole, minocycline, and doxycycline (≥95%). CONCLUSION: NTM isolation rates in Anhui have remained stable, with the predominant species being M. intracellulare, M. kansasii, M. abscessus, and M. avium. NTM strains are highly sensitive to amikacin, clarithromycin, rifabutin, moxifloxacin, and rifampicin. These findings can guide diagnosis, treatment strategies, and drug selection for NTM disease in Anhui Province.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...