Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149050, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806091

RESUMO

Purple phototrophic bacteria possess light-harvesting 1 and reaction center (LH1-RC) core complexes that play a key role in converting solar energy to chemical energy. High-resolution structures of LH1-RC and RC complexes have been intensively studied and have yielded critical insight into the architecture and interactions of their proteins, pigments, and cofactors. Nevertheless, a detailed picture of the structure and assembly of LH1-only complexes is lacking due to the intimate association between LH1 and the RC. To study the intrinsic properties and structure of an LH1-only complex, a genetic system was constructed to express the Thermochromatium (Tch.) tepidum LH1 complex heterologously in a modified Rhodospirillum rubrum mutant strain. The heterologously expressed Tch. tepidum LH1 complex was isolated in a pure form free of the RC and exhibited the characteristic absorption properties of Tch. tepidum. Cryo-EM structures of the LH1-only complexes revealed a closed circular ring consisting of either 14 or 15 αß-subunits, making it the smallest completely closed LH1 complex discovered thus far. Surprisingly, the Tch. tepidum LH1-only complex displayed even higher thermostability than that of the native LH1-RC complex. These results reveal previously unsuspected plasticity of the LH1 complex, provide new insights into the structure and assembly of the LH1-RC complex, and show how molecular genetics can be exploited to study membrane proteins from phototrophic organisms whose genetic manipulation is not yet possible.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Chromatiaceae/metabolismo , Chromatiaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
2.
J Integr Plant Biol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411333

RESUMO

Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1-RC) core complex of this bacterium displays an LH1-Qy transition at 1,016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1-RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αßγ-polypeptides and one αß-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1-RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1-α3ß3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1-α3ß3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.

3.
Environ Microbiol ; 26(2): e16591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387883

RESUMO

The ecological success of purple sulfur bacteria (PSB) is linked to their ability to collect near-infrared solar energy by membrane-integrated, pigment-protein photocomplexes. These include a Core complex containing both light-harvesting 1 (LH1) and reaction centre (RC) components (called the LH1-RC photocomplex) present in all PSB and a peripheral light-harvesting complex present in most but not all PSB. In research to explain the unusual absorption properties of the thermophilic purple sulfur bacterium Thermochromatium tepidum, Ca2+ was discovered bound to LH1 polypeptides in its LH1-RC; further work showed that calcium controls both the thermostability and unusual spectrum of the Core complex. Since then, Ca2+ has been found in the LH1-RC photocomplexes of several other PSB, including mesophilic species, but not in the LH1-RC of purple non-sulfur bacteria. Here we focus on four species of PSB-two thermophilic and two mesophilic-and describe how Ca2+ is integrated into and affects their photosynthetic machinery and why this previously overlooked divalent metal is a key nutrient for their ecological success.


Assuntos
Cálcio , Chromatiaceae , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Peptídeos/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo
4.
Commun Biol ; 7(1): 176, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347078

RESUMO

The mesophilic purple sulfur phototrophic bacterium Allochromatium (Alc.) vinosum (bacterial family Chromatiaceae) has been a favored model for studies of bacterial photosynthesis and sulfur metabolism, and its core light-harvesting (LH1) complex has been a focus of numerous studies of photosynthetic light reactions. However, despite intense efforts, no high-resolution structure and thorough biochemical analysis of the Alc. vinosum LH1 complex have been reported. Here we present cryo-EM structures of the Alc. vinosum LH1 complex associated with reaction center (RC) at 2.24 Å resolution. The overall structure of the Alc. vinosum LH1 resembles that of its moderately thermophilic relative Alc. tepidum in that it contains multiple pigment-binding α- and ß-polypeptides. Unexpectedly, however, six Ca ions were identified in the Alc. vinosum LH1 bound to certain α1/ß1- or α1/ß3-polypeptides through a different Ca2+-binding motif from that seen in Alc. tepidum and other Chromatiaceae that contain Ca2+-bound LH1 complexes. Two water molecules were identified as additional Ca2+-coordinating ligands. Based on these results, we reexamined biochemical and spectroscopic properties of the Alc. vinosum LH1-RC. While modest but distinct effects of Ca2+ were detected in the absorption spectrum of the Alc. vinosum LH1 complex, a marked decrease in thermostability of its LH1-RC complex was observed upon removal of Ca2+. The presence of Ca2+ in the photocomplex of Alc. vinosum suggests that Ca2+-binding to LH1 complexes may be a common adaptation in species of Chromatiaceae for conferring spectral and thermal flexibility on this key component of their photosynthetic machinery.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Chromatiaceae/química , Chromatiaceae/metabolismo , Fotossíntese , Peptídeos/metabolismo
5.
Extremophiles ; 27(2): 19, 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37481751

RESUMO

Although several species of purple sulfur bacteria inhabit soda lakes, Rhodobaca bogoriensis is the first purple nonsulfur bacterium cultured from such highly alkaline environments. Rhodobaca bogoriensis strain LBB1T was isolated from Lake Bogoria, a soda lake in the African Rift Valley. The phenotype of Rhodobaca bogoriensis is unique among purple bacteria; the organism is alkaliphilic but not halophilic, produces carotenoids absent from other purple nonsulfur bacteria, and is unable to grow autotrophically or fix molecular nitrogen. Here we analyze the draft genome sequence of Rhodobaca bogoriensis to gain further insight into the biology of this extremophilic purple bacterium. The strain LBB1T genome consists of 3.91 Mbp with no plasmids. The genome sequence supports the defining characteristics of strain LBB1T, including its (1) production of a light-harvesting 1-reaction center (LH1-RC) complex but lack of a peripheral (LH2) complex, (2) ability to synthesize unusual carotenoids, (3) capacity for both phototrophic (anoxic/light) and chemotrophic (oxic/dark) energy metabolisms, (4) utilization of a wide variety of organic compounds (including acetate in the absence of a glyoxylate cycle), (5) ability to oxidize both sulfide and thiosulfate despite lacking the capacity for autotrophic growth, and (6) absence of a functional nitrogen-fixation system for diazotrophic growth. The assortment of properties in Rhodobaca bogoriensis has no precedent among phototrophic purple bacteria, and the results are discussed in relation to the organism's soda lake habitat and evolutionary history.


Assuntos
Lagos , Rhodobacteraceae , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Rhodobacteraceae/fisiologia , Lagos/microbiologia , Filogenia , Metabolismo Energético , Carbono/metabolismo , Redes e Vias Metabólicas , Acetatos/metabolismo , Vitaminas/metabolismo , Poli-Hidroxialcanoatos/metabolismo
6.
J Biol Chem ; 299(8): 105057, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468106

RESUMO

In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.


Assuntos
Proteínas de Bactérias , Chloroflexi , Fotossíntese , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Chloroflexi/metabolismo , Complexos de Proteínas Captadores de Luz/química
7.
Photosynth Res ; 157(1): 13-20, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930432

RESUMO

Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Microscopia de Força Atômica , Complexos de Proteínas Captadores de Luz/metabolismo , Chromatiaceae/metabolismo , Proteobactérias/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo
8.
Nat Commun ; 14(1): 846, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792596

RESUMO

Rhodobacter (Rba.) capsulatus has been a favored model for studies of all aspects of bacterial photosynthesis. This purple phototroph contains PufX, a polypeptide crucial for dimerization of the light-harvesting 1-reaction center (LH1-RC) complex, but lacks protein-U, a U-shaped polypeptide in the LH1-RC of its close relative Rba. sphaeroides. Here we present a cryo-EM structure of the Rba. capsulatus LH1-RC purified by DEAE chromatography. The crescent-shaped LH1-RC exhibits a compact structure containing only 10 LH1 αß-subunits. Four αß-subunits corresponding to those adjacent to protein-U in Rba. sphaeroides were absent. PufX in Rba. capsulatus exhibits a unique conformation in its N-terminus that self-associates with amino acids in its own transmembrane domain and interacts with nearby polypeptides, preventing it from interacting with proteins in other complexes and forming dimeric structures. These features are discussed in relation to the minimal requirements for the formation of LH1-RC monomers and dimers, the spectroscopic behavior of both the LH1 and RC, and the bioenergetics of energy transfer from LH1 to the RC.


Assuntos
Rhodobacter capsulatus , Rhodobacter sphaeroides , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo
9.
J Phys Chem B ; 127(1): 6-17, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36594654

RESUMO

Purple phototrophic bacteria are ancient anoxygenic phototrophs and attractive research tools because they capture light energy in the near-infrared (NIR) region of the spectrum and transform it into chemical energy by way of uphill energy transfers. The heart of this reaction occurs in light-harvesting 1-reaction center (LH1-RC) complexes, which are the simplest model systems for understanding basic photosynthetic reactions within type-II (quinone-utilizing) reaction centers. In this Perspective, we highlight structure-function relationships concerning unresolved fundamental processes in purple bacterial photosynthesis, including the diversified light-harvesting capacity of LH1-associated BChl molecules, energies necessary for photoelectric conversion in the RC special pairs, and quinone transport mechanisms. Based on recent progress in the spectroscopic and structural analysis of LH1-RC complexes from a variety of purple phototrophs, we discuss several key factors for understanding how purple bacteria resource light energy in the inherently energy-poor NIR region of the electromagnetic spectrum.


Assuntos
Complexos de Proteínas Captadores de Luz , Proteobactérias , Proteobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Análise Espectral , Citoplasma/metabolismo , Proteínas de Bactérias/química
10.
Commun Biol ; 5(1): 1197, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344631

RESUMO

Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1-reaction center (LH1-RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.


Assuntos
Extremófilos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Fotossíntese , Proteobactérias/genética , Peptídeos/metabolismo , Heme/metabolismo
11.
J Nat Prod ; 85(10): 2266-2273, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36129462

RESUMO

Meiothermus ruber DSMZ 1279T was isolated from a hot spring in Kamchatka and was red in color. The major carotenoid present was reported to be 1'-(ß-d-glucopyranosyloxy)-3,4,3',4'-tetradehydro-1',2'-dihydro-ß,ψ-caroten-2-one after saponification (Burgess et al. J. Nat. Prod. 1999, 62, 859-863). In this study, we purified the major carotenoids in this species without saponification. We then reidentified the major carotenoids present using spectroscopic data, including electronic circular dichroism (ECD), 1H NMR, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), 13C NMR, heteronuclear single-quantum correlation spectroscopy (HSQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), and MS, and enzymatic hydrolysis of fatty acid moieties and found deinoxanthin glucoside iso fatty acid esters. The bound fatty acids present included four iso types, and their composition differed from cellular lipids. Moreover, the previously identified carotenoid glucoside was a saponification artifact of deinoxanthin glucoside esters. Ketomyxocoxanthin glucoside esters and 1'-hydroxytorulene glucoside esters were also present. On the basis of the identification of carotenoids and the whole genome sequence of M. ruber, we propose a carotenoid biosynthetic pathway and note the corresponding genes.


Assuntos
Ésteres , Glucosídeos , Ésteres/química , Glucosídeos/metabolismo , Carotenoides/química , Ácidos Graxos/química
12.
Microorganisms ; 10(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35630403

RESUMO

Halorhodospira (Hlr.) species are the most halophilic and alkaliphilic of all purple bacteria. Hlr. halochloris exhibits the lowest LH1 Qy transition energy among phototrophic organisms and is the only known triply extremophilic anoxygenic phototroph, displaying a thermophilic, halophilic, and alkaliphilic phenotype. Recently, we reported that electrostatic charges are responsible for the unusual spectroscopic properties of the Hlr. halochloris LH1 complex. In the present work, we examined the effects of salt and pH on the spectroscopic properties and thermal stability of LH1-RCs from Hlr. halochloris compared with its mesophilic counterpart, Hlr. abdelmalekii. Experiments in which the photocomplexes were subjected to different levels of salt or variable pH revealed that the thermal stability of LH1-RCs from both species was largely retained in the presence of high salt concentrations and/or at alkaline pH but was markedly reduced by lowering the salt concentration and/or pH. Based on the amino acid sequences of LH1 polypeptides and their composition of acidic/basic residues and the Hofmeister series for cation/anion species, we discuss the importance of electrostatic charge in stabilizing the Hlr. halochloris LH1-RC complex to allow it to perform photosynthesis in its warm, hypersaline, and alkaline habitat.

13.
J Biol Chem ; 298(6): 101967, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460693

RESUMO

The mildly thermophilic purple phototrophic bacterium Allochromatium tepidum provides a unique model for investigating various intermediate phenotypes observed between those of thermophilic and mesophilic counterparts. The core light-harvesting (LH1) complex from A. tepidum exhibits an absorption maximum at 890 nm and mildly enhanced thermostability, both of which are Ca2+-dependent. However, it is unknown what structural determinants might contribute to these properties. Here, we present a cryo-EM structure of the reaction center-associated LH1 complex at 2.81 Å resolution, in which we identify multiple pigment-binding α- and ß-polypeptides within an LH1 ring. Of the 16 α-polypeptides, we show that six (α1) bind Ca2+ along with ß1- or ß3-polypeptides to form the Ca2+-binding sites. This structure differs from that of fully Ca2+-bound LH1 from Thermochromatium tepidum, enabling determination of the minimum structural requirements for Ca2+-binding. We also identified three amino acids (Trp44, Asp47, and Ile49) in the C-terminal region of the A. tepidum α1-polypeptide that ligate each Ca ion, forming a Ca2+-binding WxxDxI motif that is conserved in all Ca2+-bound LH1 α-polypeptides from other species with reported structures. The partial Ca2+-bound structure further explains the unusual phenotypic properties observed for this bacterium in terms of its Ca2+-requirements for thermostability, spectroscopy, and phototrophic growth, and supports the hypothesis that A. tepidum may represent a "transitional" species between mesophilic and thermophilic purple sulfur bacteria. The characteristic arrangement of multiple αß-polypeptides also suggests a mechanism of molecular recognition in the expression and/or assembly of the LH1 complex that could be regulated through interactions with reaction center subunits.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/química , Peptídeos/química
14.
J Phys Chem Lett ; 13(16): 3534-3541, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420425

RESUMO

Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.


Assuntos
Proteínas de Bactérias , Bacterioclorofilas , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese
15.
Nat Commun ; 13(1): 1904, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393413

RESUMO

Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 ß-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 ß-polypeptides, indicating a critical role for protein-U in controlling the number of αß-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.


Assuntos
Rhodobacter sphaeroides , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Peptídeos/química , Fotossíntese , Rhodobacter sphaeroides/metabolismo
17.
J Chem Phys ; 156(10): 105101, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291798

RESUMO

Calcium ions play a dual role in expanding the spectral diversity and structural stability of photocomplexes from several Ca2+-requiring purple sulfur phototrophic bacteria. Here, metal-sensitive structural changes in the isotopically labeled light-harvesting 1 reaction center (LH1-RC) complexes from the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum were investigated by perfusion-induced attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The ATR-FTIR difference spectra induced by exchanges between native Ca2+ and exogenous Ba2+ exhibited interconvertible structural and/or conformational changes in the metal binding sites at the LH1 C-terminal region. Most of the characteristic Ba2+/Ca2+ difference bands were detected even when only Ca ions were removed from the LH1-RC complexes, strongly indicating the pivotal roles of Ca2+ in maintaining the LH1-RC structure of Tch. tepidum. Upon 15N-, 13C- or 2H-labeling, the LH1-RC complexes exhibited characteristic 15N/14N-, 13C/12C-, or 2H/1H-isotopic shifts for the Ba2+/Ca2+ difference bands. Some of the 15N/14N or 13C/12C bands were also sensitive to further 2H-labelings. Given the band frequencies and their isotopic shifts along with the structural information of the Tch. tepidum LH1-RC complexes, metal-sensitive FTIR bands were tentatively identified to the vibrational modes of the polypeptide main chains and side chains comprising the metal binding sites. Furthermore, important new IR marker bands highly sensitive to the LH1 BChl a conformation in the Ca2+-bound states were revealed based on both ATR-FTIR and near-infrared Raman analyses. The present approach provides valuable insights concerning the dynamic equilibrium between the Ca2+- and Ba2+-bound states statically resolved by x-ray crystallography.


Assuntos
Cálcio , Complexos de Proteínas Captadores de Luz , Cálcio/química , Chromatiaceae , Isótopos , Complexos de Proteínas Captadores de Luz/química , Análise Espectral
18.
Arch Microbiol ; 204(1): 115, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984587

RESUMO

We describe a new species of purple sulfur bacteria (Chromatiaceae, anoxygenic phototrophic bacteria) isolated from a microbial mat in the sulfidic geothermal outflow of a hot spring in Rotorua, New Zealand. This phototroph, designated as strain NZ, grew optimally near 45 °C but did not show an absorption maximum at 915 nm for the light-harvesting-reaction center core complex (LH1-RC) characteristic of other thermophilic purple sulfur bacteria. Strain NZ had a similar carotenoid composition as Thermochromatium tepidum, but unlike Tch. tepidum, grew photoheterotrophically on acetate in the absence of sulfide and metabolized thiosulfate. The genome of strain NZ was significantly larger than that of Tch. tepidum but slightly smaller than that of Allochromatium vinosum. Strain NZ was phylogenetically more closely related to mesophilic purple sulfur bacteria of the genus Allochromatium than to Tch. tepidum. This conclusion was reached from phylogenetic analyses of strain NZ genes encoding 16S rRNA and the photosynthetic functional gene pufM, from phylogenetic analyses of entire genomes, and from a phylogenetic tree constructed from the concatenated sequence of 1090 orthologous proteins. Moreover, average nucleotide identities and digital DNA:DNA hybridizations of the strain NZ genome against those of related species of Chromatiaceae supported the phylogenetic analyses. From this collection of properties, we describe strain NZ here as the first thermophilic species of the genus Allochromatium, Allochromatium tepidum NZT, sp. nov.


Assuntos
Chromatiaceae , Fontes Termais , Chromatiaceae/genética , Complexos de Proteínas Captadores de Luz , Filogenia , RNA Ribossômico 16S/genética
19.
Photosynth Res ; 151(1): 125-142, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669148

RESUMO

The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.


Assuntos
Chromatiaceae , Chromatiaceae/genética , Análise de Sequência de DNA , Enxofre
20.
Nat Commun ; 12(1): 6300, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728609

RESUMO

Rhodobacter (Rba.) sphaeroides is the most widely used model organism in bacterial photosynthesis. The light-harvesting-reaction center (LH1-RC) core complex of this purple phototroph is characterized by the co-existence of monomeric and dimeric forms, the presence of the protein PufX, and approximately two carotenoids per LH1 αß-polypeptides. Despite many efforts, structures of the Rba. sphaeroides LH1-RC have not been obtained at high resolutions. Here we report a cryo-EM structure of the monomeric LH1-RC from Rba. sphaeroides strain IL106 at 2.9 Å resolution. The LH1 complex forms a C-shaped structure composed of 14 αß-polypeptides around the RC with a large ring opening. From the cryo-EM density map, a previously unrecognized integral membrane protein, referred to as protein-U, was identified. Protein-U has a U-shaped conformation near the LH1-ring opening and was annotated as a hypothetical protein in the Rba. sphaeroides genome. Deletion of protein-U resulted in a mutant strain that expressed a much-reduced amount of the dimeric LH1-RC, indicating an important role for protein-U in dimerization of the LH1-RC complex. PufX was located opposite protein-U on the LH1-ring opening, and both its position and conformation differed from that of previous reports of dimeric LH1-RC structures obtained at low-resolution. Twenty-six molecules of the carotenoid spheroidene arranged in two distinct configurations were resolved in the Rba. sphaeroides LH1 and were positioned within the complex to block its channels. Our findings offer an exciting new view of the core photocomplex of Rba. sphaeroides and the connections between structure and function in bacterial photocomplexes in general.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/metabolismo , Dimerização , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...