Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766256

RESUMO

This experiment was aimed to compare the effects of two diets with different protein content on the growth performance, immune indexes, rumen fermentation characteristics and plasma metabolomics of growing yak in the cold season. A total of 24, 2-year-old healthy yaks with similar body weight (142.9 ± 3.56 kg) were randomly allocated to two isoenergetic diets with different protein content (10 vs 14%) according to a non-paired experimental design, and the protein of the diets was increased by increasing soybean meal, rapeseed meal and cottonseed meal. The growth performance experiment lasted 56 days. Four days before the end of the growth experiment, the digestion trial was conducted, and the rumen fluid and plasma was collected for measurement. The results showed that the average daily feed intake (p < 0.001) and average daily gain (p = 0.006) of yak fed a high-protein diet was significantly greater, while the feed conversion ratio was lower (p = 0.021) than that of yaks fed a low-protein diet. Plasma aspartate aminotransferase (p = 0.002), alanine aminotransferase (p < 0.001), malondialdehyde (p = 0.001), tumor necrosis factor-α (p = 0.032) and interferon-γ (p = 0.017) of the high-protein group were significantly lesser, whereas superoxide dismutase (p = 0.004) and interleukin-2 (p = 0.007) was significantly greater than that of the low-protein group. The rumen microbial crude protein (p < 0.047) and crude protein digestibility (p = 0.015) of yak fed a high-protein diet was significantly greater than that of the low-protein group. The metabolomics results showed that yaks fed a high-protein diet were elevated in protein digestion and absorption, arginine and proline metabolism, tryptophan metabolism, purine metabolism, butanoate metabolism, taste transduction, pyrimidine metabolism, pantothenate and CoA biosynthesis, glutathione metabolism and renin secretion pathways. It is concluded that a high-protein diet in the cold season can promote rumen microbial crude protein synthesis, enhance antioxidant and immune function and promote growth performance of yaks.

2.
Front Microbiol ; 13: 969524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338094

RESUMO

Tibetan pigs were thought to have good performances of rough feeding tolerance, which may be related to the gut microbiota. This study was conducted to investigate the changes of colonic microbiota contribute to fiber utilization in Tibetan pigs fed alfalfa supplementation diet compared with basal diet, and verified whether the microbial community in Tibetan pigs fed alfalfa diet was beneficial to utilize fiber using in vitro fermentation. A total of 40 Tibetan pigs were allocated into two groups and fed with a corn-soybean meal basal diet (CD) or a 50% alfalfa supplementation diet (AD) for 42d. Our results showed pigs fed CD diet improved carcass weight compared to pigs fed AD diet (p < 0.05), yet reduced the bacterial diversity (p < 0.05). Tibetan pigs fed CD diet increased certain pathogenic bacteria (Streptococcus) abundance (FDR < 0.05). Alfalfa consumption increased fiber-degrading bacteria abundance (UCG-005, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Alloprevotella, Marvinbryantia, and Anaerovibrio) in the colonic digesta (FDR < 0.05) and improved concentrations of acetate, propionate, butyrate, and total SCFA in colonic content (p < 0.05). Higher fermentation capacity of fecal microbiota from pig fed AD diet was verified by in vitro fermentation. Collectively, our results indicated that alfalfa supplementation in diets improved the abundance of fiber-degrading bacteria and SCFA production in the hindgut of Tibetan pig, as well as enhanced the fermentation capacity of fecal microbiota.

3.
Front Microbiol ; 13: 968521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160198

RESUMO

In recent years, the three-way crossbred commercial pigs are extensively cultured in Tibet. However, there have been few studies about the effect of high-altitude hypoxic environment on intestinal health of them. Therefore, we selected Tibetan pigs (TP) and the three-way crossbred commercial pigs (CP-H) living in the Tibet (3,500-3,700 m in altitude) as a positive control group and treatment group, respectively. The three-way crossbred commercial pigs (CP-L) living at altitudes 800-1,000 m sea level were selected as a negative control group. The colonic chyme, colonic mucosa, colonic tissue and serum samples were collected for the detection of gut microbiota and intestinal inflammation. The results showed that high-altitude hypoxic environment promoted the occurrence of colonic inflammation, disrupted the colonic barrier to some extent. And Hematoxylin-Eosin (HE) staining revealed that mild inflammatory cell infiltration was observed in colon of CP-H. 16S rRNA gene sequencing revealed that the microbial community composition of CP-H was changed compared with CP-L. Gut bacterial communities formed distinctly different clusters in principal coordinates analysis (PCoA) space, and Chao 1 index of CP-H was also decreased. At the genus level, Terrisporobacter showed greater enrichment in the CP-H than lower-altitude pigs. Colstridium-sensu-stricto-1 showed lower enrichment in the CP-H than lower-altitude pigs. However, the concentration of valeric acid in colonic chyme of CP-H was higher than CP-L and TP. Correlation analysis indicated that Terrisporobacter was positively associated with the relative mRNA expression level of IL-1ß and the content of lipopolysaccharide (LPS), and was negatively correlated with the relative mRNA expression level of IL-10. The Streptococcus was positively associated with the concentrations of valerate. In summary, high-altitude hypoxic environment changed compositions of gut microbiota, promoted the occurrence of colonic inflammation, and disrupted intestinal barrier of the three-way crossbred commercial pigs.

4.
Front Microbiol ; 13: 974765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160251

RESUMO

Grazing (G) yaks (Bos grunniens) are generally of low fertility, which severely limits the income of local pastoralists. However, we recently found that yaks had a 52% higher estrus rate in house feeding (HF) than in G. Gas chromatography-mass spectrometry (GC-MS) and 16S rRNA gene sequencing were used to analyze serum metabolites and fecal microbiota of 20 rutting yaks in the G and HF systems, respectively, to explain this phenomenon. The results showed that 73 total metabolites differed significantly (p < 0.05 and VIP > 1) between the G and HF systems. In the HF system, 53 were upregulated and 20 were downregulated compared with the G system. Organic oxygen compounds, organic acids and their derivatives, and lipids and lipid-like molecules were the most common differential metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapper revealed that 25 metabolic signaling pathways differed significantly between the two systems. The top three enriched pathways included central carbon metabolism in cancer, aminoacyl-tRNA biosynthesis, and ABC transporters. The 16S rRNA gene sequencing data showed no significant differences in Chao 1 index between the two systems. According to principal component analysis (PCA), the HF and G systems were distinctly and separately clustered in terms of fecal microbiota distribution. The G system showed significantly higher abundances of Firmicutes. The HF system showed significantly higher abundances of Alistipes, Treponema, and Rikenellaceae_ RC9_ gut_ group. Pearson's correlation analysis and core network analysis revealed that Rikenellaceae_RC9_ gut_ group, Alistipes, and Treponema were positively correlated with myo-inositol and formed the core bacteria. In summary, the HF system promoted the estrus rate and changed the composition of yak fecal microbiota and serum metabolites. Increased estrus rate might be obtained due to enhanced myo-inositol content in yak serum via the HF system. Correlation analysis suggested that myo-inositol content might also be partly increased via yak-specific fecal microbiota, contributing to the estrus rate. These findings could lead to a novel therapeutic strategy for G yaks due to their low estrus rate.

5.
Anaerobe ; 61: 102115, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31711887

RESUMO

Yak (Bos grunniens), a ruminant, has a complex gastrointestinal microbial ecosystem, which is essential for host nutrition and health. However, not much is known about gut microbial communities of yak. This study was conducted to characterize the gut microbial diversity and composition of small intestinal and cecal contents of yaks through high-throughput sequencing targeting V3-V4 hypervariable region of 16S rRNA gene. A total of 916,934 high-quality sequences were obtained and 224 core operational taxonomic units (OTUs) shared all samples. The result showed that the microbial community in the small intestine was different from cecum sample. In all samples, the majority of bacterial phyla were Firmicutes, Bacteroidetes and Proteobacteria. A large proportion of anaerobes in the families Peptostreptococcaceae, Prevotellaceae, Flavobacteriaceae, Lachnospiraceae, and Succinivibrionaceae were present in the various intestinal segments. The relative abundance of Ruminococcaceae, Bacteroidaceae and Muribaculaceae were significantly higher in cecum than in other segments of intestines. At the genus level, Bacteroides was the most predominant genus in cecum. The results indicated that yak have abundant and diverse gut microbial community. In conclusion, this study characterized the profiles of microbial communities across intestinal segments and provide better insight into microbial population structure and diversity of yak.


Assuntos
Microbioma Gastrointestinal , Animais , Biodiversidade , Bovinos , Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos , Filogenia
6.
Microb Pathog ; 132: 1-9, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30999021

RESUMO

Enteroinvasive Escherichia coli (EIEC) are well-known food-borne pathogens that cause animal intestinal diseases. Lactobacillus is believed to inhibit intestinal pathogens and maintain a healthy gut microbiota. This study aimed to investigate the effects of pre-supplementation of Lactobacillus from yaks (4500m) to prevent the clinical symptoms and the improvement of the disordered flora caused by E. coli infection. Forty healthy mice were randomized to four study groups (n = 10); Leuconostoc pseudomesenteroides (LP1), Lactobacillus johnsonii (LJ1), blank control, and control groups. Mice in the LP1, LJ1, and control groups were intraperitoneally challenged with EIEC O124 (1 × 109 CFU) on day 23. After two days, the mice in control group were recorded for high mortality. The diarrhea in LP1 and LJ1 groups was much lower than that in the control group, and no death was recorded. In histopathology, pre-supplementation of LJ1 and LP1 relieved the damage to the liver, spleen and duodenum caused by E. coli. In addition, the normal intestinal microecology was also affected by infection of EIEC, including an increase in relative abundance of Proteobacteria. At the same time, the beneficial bacteria were increased and harmful bacteria were decreased in different intestinal segments of the LJ1 and LP1 groups compared to the control group. In conclusion, pre-supplementation of LP1 and LJ1 can mitigate EIEC-induced intestinal flora dysbiosis and can also reduce EIEC-associated diarrhea.


Assuntos
Diarreia , Infecções por Escherichia coli , Microbioma Gastrointestinal , Lactobacillus , Animais , Bovinos , Feminino , Camundongos , Diarreia/microbiologia , Diarreia/prevenção & controle , Suplementos Nutricionais , Modelos Animais de Doenças , DNA Bacteriano , Duodeno/patologia , Disbiose , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Intestinos/patologia , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Fígado/patologia , RNA Ribossômico 16S/genética , Baço/patologia , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...