Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Methods Chem ; 2022: 2229500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052342

RESUMO

Color pigments from plant, animal, or mineral sources can be identified, separated, and quantified for various purposes. It is expected that pigments from Beta vulgaris L. peels and pomaces could be used to develop natural dyes that can find applications in areas such as food or textile dyeing industries. This work aimed at identifying and quantifying the pigment in the B. vulgaris L. peels and pomaces extracts as well as validating the method by high-performance liquid chromatography combined with ultraviolet spectroscopy (HPLC-UV) and ultra-high-performance liquid chromatography coupled with triple quadrupole (TSQ) mass spectrometry (UHPLC-MS/MS). Column chromatography was used to isolate compounds after methanolic solvent extraction. Identification and quantification of the pigments in the extract were achieved using reverse-phase HPLC with a UV detector (538 nm). The UHPLC-MS/MS was used for further confirmation of colored compounds in the extract. Method validation included the use of betanin standard (betanidin 5-ß-D-glucopyranoside), determination of repeatability (precision), calibration curve linearity, and sensitivity (LOD and LOQ) tests. Betanin was detected in the sample at retention times of 7.699 and 7.71 minutes, respectively, which closely matched the tR (7.60 min) of the standard, according to HPLC-UV and LC-MS/MS data. The average betanin concentration was 3.81 0.31 mg/g of dry weight, according to the HPLC-UV analysis. The LC-MS/MS data revealed the existence of several compounds, including betanin (4.31 ± 2.15 mg/g), isobetanin (1.85 ± 2.20 mg/g), 2, 17-bidecarboxy-neobetanin (0.71 ± 0.02 mg/g), betanidin (0.71 ± 0.03 mg/g), 2-O-glucosyl-betanin (0.40 ± 0.10 mg/g), and isobetanidin (0.36 ± 1.26 mg/g), among other compounds whose yields were too low. In conclusion, the peels and pomaces of B. vulgaris L. can be a useful source for the extraction of a red dye for use in coloring, such as the dyeing of textile substrates.

2.
BMC Res Notes ; 13(1): 564, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317599

RESUMO

OBJECTIVE: To investigate the effect of cooking temperature and time on the total phenolic content, total flavonoid content and antioxidant activity of aqueous and ethanolic extracts of garlic. RESULTS: The mean total phenolic content of fresh garlic were 303.07 ± 6.58 mg gallic acid equivalent per 100 g (GAE/100 g) and 638.96 ± 15.30 mg GAE/100 g of plant material for the aqueous and ethanolic extracts respectively. The mean total flavonoid content 109.78 ± 6.78 mg quercetin equivalent per 100 g (QE/100 g) and 258.47 ± 12.37 QE/100 g for aqueous and ethanolic extracts respectively. Fourier transform infrared spectral data showed absorptions in the range for carboxylic acids, hydroxyl group, esters, and alcohols, confirming the presence of phenols and flavonoids in the extracts. Cooking temperature had a significant effect on total phenolic content and total flavonoid content while cooking time did not have a significant effect on the phytochemicals and antioxidant activity.


Assuntos
Antioxidantes , Alho , Antioxidantes/farmacologia , Culinária , Flavonoides/análise , Fenóis/análise , Extratos Vegetais/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...