Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3687, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111942

RESUMO

Cowpea, Vigna unguiculata (L.) Walp. is an important grain legume grown in the dry agro-ecologies of the tropics with considerably low yield due to lack of improved varieties, aggravated by prevalent narrow genetic base. Thus, induced mutagenesis was employed using sodium azide and gamma rays to increase genetic variability in cowpea genotypes that resulted in isolation of eleven high yielding mutant lines at the M4 generation from the genetic background of cowpea varieties Gomati VU-89 and Pusa-578. In order to analyze the induced genetic divergence among the mutant lines and parent genotypes, biochemical and molecular characterization was carried out with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), simple sequence repeat (SSR) and CAAT box derived polymorphism (CBDP) markers. Activity of nitrate reductase (NR) and content of chlorophyll, carotenoid, protein and mineral were found to be significantly high in the selected mutant lines compared to their respective parent genotypes. SDS-PAGE profile of seed proteins generated 54 and 28 polymorphic bands and a total polymorphism of 62.06 and 41.17% in Gomati VU-89 and Pusa-578, respectively. SSR primers amplified a total of 16 and 24 polymorphic bands with an average polymorphism of 20.69 and 50.74% in Gomati VU-89 and Pusa-578, respectively. CBDP markers, used for the first time in mutagenized population, generated 175 bands with 77 bands being polymorphic in Gomati VU-89 and 121 bands with 59 bands being polymorphic in Pusa-578. Physiological, biochemical and molecular profiling of the selected promising mutants lines showed that Gomati VU-89-G and Pusa-578-C are genetically most diverged high yielding genotypes with significant increase in protein and micronutrient content, therefore, could be recommended for further research considerations. Thus, the favorable combination of genes induced in the novel cowpea mutants selected through the present study are valuable to correspond farmers requirements for new improved cultivars (direct or hybrids).


Assuntos
Genótipo , Mutagênese , Mutação , Polimorfismo Genético , Vigna/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vigna/crescimento & desenvolvimento
2.
Int J Radiat Biol ; 94(11): 1049-1053, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30273083

RESUMO

PURPOSE: Lentil (Lens culinaris Medik.), being a self-pollinated crop with narrow genetic base, is an important target crop for mutation breeding experiments. The purpose of the investigation was to create, select and characterize unique mutations in inflorescence traits that have strong impact on lentil yield and yield stability. MATERIALS AND METHODS: Healthy and uniform seeds (moisture 11.0%) of Lens culinaris Medik. cultivar Pant L 406 were irradiated with 100, 200, 300 and 400 Gy of gamma rays. The mutagenized populations were maintained up to mutant generation third (M3) to screen for stable mutations in the inflorescence architecture of the lentil. The selected mutant mp 'Multipodding' trait, i.e. multiple pods per peduncle, was morphologically characterized and quantified in subsequent mutant generation fourth (M4). RESULTS: The morphological characterization of the 'multipodding' mutant (mp) revealed substantial morphological mutations were induced by the treatment of gamma rays. The estimation of yield per plant (g) between the mutant (mp) and parent cultivar Pant L 406 showed non-significant variation due to significant reduction in seed weight. CONCLUSIONS: The novel 'multipodding' (mp) mutant induced in the present study can play a key role in understanding the genetic network controlling legume inflorescence architecture and in genomics-assisted breeding for development of elite lentil cultivars.


Assuntos
Raios gama/efeitos adversos , Lens (Planta)/genética , Lens (Planta)/efeitos da radiação , Mutação/efeitos da radiação , Mutagênese/efeitos da radiação
3.
PLoS One ; 10(1): e0114571, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25629695

RESUMO

Calcium (Ca) plays important role in plant development and response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effect of Ca (50 mM) in controlling cadmium (Cd) uptake in mustard (Brassica juncea L.) plants exposed to toxic levels of Cd (200 mg L(-1) and 300 mg L(-1)). The Cd treatment showed substantial decrease in plant height, root length, dry weight, pigments and protein content. Application of Ca improved the growth and biomass yield of the Cd-stressed mustard seedlings. More importantly, the oil content of mustard seeds of Cd-stressed plants was also enhanced with Ca treatment. Proline was significantly increased in mustard plants under Cd stress, and exogenously sprayed Ca was found to have a positive impact on proline content in Cd-stressed plants. Different concentrations of Cd increased lipid peroxidation but the application of Ca minimized it to appreciable level in Cd-treated plants. Excessive Cd treatment enhanced the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase and glutathione reductase, which were further enhanced by the addition of Ca. Additionally, Cd stress caused reduced uptake of essential elements and increased Cd accumulation in roots and shoots. However, application of Ca enhanced the concentration of essential elements and decreased Cd accumulation in Cd-stressed plants. Our results indicated that application of Ca enables mustard plant to withstand the deleterious effect of Cd, resulting in improved growth and seed quality of mustard plants.


Assuntos
Cádmio/metabolismo , Cálcio/metabolismo , Mostardeira/metabolismo , Óleos de Plantas/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Biomassa , Cádmio/toxicidade , Peroxidação de Lipídeos , Mostardeira/crescimento & desenvolvimento , Oxirredução , Pigmentos Biológicos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Prolina/biossíntese , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...