Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688136

RESUMO

The development of biomaterials that are able to control the release of bioactive molecules is a challenging task for regenerative dentistry. This study aimed to enhance resin-modified glass ionomer cement (RMGIC) for the release of epidermal growth factor (EGF). This RMGIC was formulated from RMGIC powder supplemented with 15% (w/w) chitosan at a molecular weight of either 62 or 545 kDa with 5% bovine serum albumin mixed with the same liquid component as the Vitrebond. EGF was added while mixing. ELISA was used to determine EGF release from the specimen immersed in phosphate-buffered saline at 1 h, 3 h, 24 h, 3 d, 1 wk, 2 wks, and 3 wks. Fluoride and aluminum release at 1, 3, 5, and 7 d was measured by electrode and inductively coupled plasma optical emission spectrometry. Pulp cell viability was examined through MTT assays and the counting of cell numbers using a Coulter counter. The RMGIC with 65 kDa chitosan is able to prolong the release of EGF for significantly longer than RMGIC for at least 3 wks due to its retained bioactivity in promoting pulp cell proliferation. This modified RMGIC can prolong the release of fluoride, with a small amount of aluminum also released for a limited time. This biomaterial could be useful in regenerating pulp-dentin complexes.

2.
Mater Sci Eng C Mater Biol Appl ; 54: 61-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046268

RESUMO

The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.


Assuntos
Biomarcadores Tumorais/farmacologia , Proliferação de Células/efeitos dos fármacos , Quitosana/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Fosfatase Alcalina/metabolismo , Biomarcadores Tumorais/química , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Expressão Gênica , Cimentos de Ionômeros de Vidro/química , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Proteína Tumoral 1 Controlada por Tradução , Regulação para Cima
3.
J Mater Sci Mater Med ; 21(5): 1553-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20101442

RESUMO

An efficient non-viral gene delivery for varieties of cells has been considered essential for gene therapy and tissue engineering. This study evaluated transfection efficiency of chitosan (HW) with molecular weights (Mw) at 470 and degree of deacetylation (DDA) 80% and its depolymerization product (LW) with Mw at 16 kDa and DDA 54%, as well as epidermal growth factor (EGF) conjugated to chitosan-DNA microparticles of both HW and LW by using either disulfide linkage or NHS-PEO(4)-Maleimide as a cross linker. The results revealed that the depolymerized LW at chitosan/DNA charge ratio 56:1 and pH 6.9 gave high transfection efficiency in both KB, a cancer cell line, and fibroblast cells at about the same level of Lipofectamine, but the EGF-conjugated chitosan-DNA polyplexes from these methods did not improve transfection efficiency, which may come from the aggregation and fusing of the complexes as shown in scanning electron microscopy. However, this depolymerized LW chitosan showed the potential for further development as a safe and cost-effective non-viral gene delivery vehicle.


Assuntos
Quitosana/química , Quitosana/metabolismo , Técnicas de Transferência de Genes , Transfecção/métodos , Antígenos/metabolismo , Linhagem Celular , DNA/administração & dosagem , DNA/química , DNA/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Genes , Terapia Genética , Humanos , Proteínas de Membrana , Peso Molecular , Proteínas Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...