Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(29): 6711-6720, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849072

RESUMO

Halide perovskites intrinsically contain a large amount of point defects. The interaction of these defects with photocarriers, photons, and lattice distortion remains a complex and unresolved issue. We found that for halide perovskite films with excess halide vacancies, the Fermi level can be shifted by as much as 0.7 eV upon light illumination. These defects can trap photocarriers for hours after the light illumination is turned off. The enormous light-induced Fermi level shift and the prolonged electron trapping are explained by the capturing of photocarriers by halide vacancies at the surface of the perovskite film. The formation of this defect-photocarrier complex can result in lattice deformation and an energy shift in the defect state. The whole process is akin to polaron formation at a defect site. Our data also suggest that these trapped carriers increase the electrical polarizability of the lattice, presumably by enhancing the defect migration rate.

2.
J Phys Chem Lett ; 12(37): 9047-9054, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34516118

RESUMO

At organic donor-acceptor (D-A) interfaces, electron and hole are bound together to form charge transfer (CT) excitons. The electron and hole wave functions in these CT excitons can spatially delocalize. The electron delocalization opens up possibilities of extracting free charges from bound excitons by manipulating the potential energy landscape on the nanoscale. Using a prototype trilayer structure that has a cascade band structure, we show that the yield of charge separation can be doubled as compared to the bilayer counterpart when the thickness of the intermediate layer is around 3 nm. This thickness coincides with the electron delocalization size of CT excitons typically found in these organic films. Tight-binding calculation for the CT states in the trilayer structure further demonstrates that electron delocalization, together with the energy level cascade, can effectively flatten the energetic pathway for charge separation. Hence, it is possible to add nanometer-thick layers between the donor and the acceptor to significantly enhance the charge separation yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...