Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neth Heart J ; 25(12): 675-681, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28864942

RESUMO

BACKGROUND: Mutations in the myosin heavy chain 7 (MYH7) gene commonly cause cardiomyopathy but are less frequently associated with congenital heart defects. METHODS: In this study, we describe a mutation in the MYH7 gene, c. 5754C > G; p. (Asn1918Lys), present in 15 probands and 65 family members. RESULTS: Of the 80 carriers (age range 0-88 years), 46 (57.5%) had cardiomyopathy (mainly dilated cardiomyopathy (DCM)) and seven (8.8%) had a congenital heart defect. Childhood onset of cardiomyopathy was present in almost 10% of carriers. However, in only a slight majority (53.7%) was the left ventricular ejection fraction reduced and almost no arrhythmias or conduction disorders were noted. Moreover, only one carrier required heart transplantation and nine (11.3%) an implantable cardioverter defibrillator. In addition, the standardised mortality ratio for MYH7 carriers was not significantly increased. Whole exome sequencing in several cases with paediatric onset of DCM and one with isolated congenital heart defects did not reveal additional known disease-causing variants. Haplotype analysis suggests that the MYH7 variant is a founder mutation, and is therefore the first Dutch founder mutation identified in the MYH7 gene. The mutation appears to have originated in the western region of the province of South Holland between 500 and 900 years ago. CONCLUSION: Clinically, the p. (Asn1918Lys) mutation is associated with congenital heart defects and/or cardiomyopathy at young age but with a relatively benign course.

2.
Cell Calcium ; 42(1): 17-25, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17184838

RESUMO

Cell migration relies on a tight temporal and spatial regulation of the intracellular Ca2+ concentration ([Ca2+]i). [Ca2+]i in turn depends on Ca2+ influx via channels in the plasma membrane whose molecular nature is still largely unknown for migrating cells. A mechanosensitive component of the Ca2+ influx pathway was suggested. We show here that the capsaicin-sensitive transient receptor potential channel TRPV1, that plays an important role in pain transduction, is one of the Ca2+ influx channels involved in cell migration. Activating TRPV1 channels with capsaicin leads to an acceleration of human hepatoblastoma (HepG2) cells pretreated with hepatocyte growth factor (HGF). The speed rises by up to 50% and the displacement is doubled. Patch clamp experiments revealed the presence of capsaicin and resiniferatoxin (RTX)-sensitive currents. In contrast, HepG2 cells kept in the absence of HGF are not accelerated by capsaicin and express no capsaicin- or RTX-sensitive current. The TRPV1 antagonist capsazepine prevents the stimulation of migration and inhibits capsaicin-sensitive currents. Finally, we compared the contribution of capsaicin-sensitive TRPV1 channels to cell migration with that of mechanosensitive TRPV4 channels that are also expressed in HepG2 cells. A specific TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, does not increase the displacement. In summary, we assigned a novel role to capsaicin-sensitive TRPV1 channels. They are important Ca2+ influx channels required for cell migration.


Assuntos
Capsaicina/farmacologia , Movimento Celular/fisiologia , Canais de Cátion TRPV/fisiologia , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Ésteres de Forbol/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...