Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 182(4): 1187-1201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27628222

RESUMO

Textbook examples of adaptive radiation often show rapid morphological changes in response to environmental perturbations. East Africa's Lake Victoria, famous for its stunning adaptive radiation of cichlids, has suffered from human-induced eutrophication over the past decades. This cultural eutrophication is thought to be partly responsible for the dramatically reduced cichlid biodiversity, but climatic variability in itself might also have contributed to the eutrophication which resulted in low oxygen levels and decreased water transparency. To determine how recent environmental changes have influenced the lake and its cichlids over the past 50 years, we gathered environmental and meteorological variables and compared these with gill surface area of four cichlid species. We found that during the period of severe eutrophication and temperature increase (1980s), reduced wind speeds coincided with a reduction in oxygen levels and a decrease in both water temperature and transparency. The gill surface area in three out of the four cichlid species increased during this period which is consistent with adaptive change in response to increased hypoxia. During the 2000s, wind speeds, oxygen levels, water transparency and water temperature increased again, while cichlid gill surface area decreased. Our results imply that climatic changes and especially wind speed and direction might play a crucial role in tropical lake dynamics. The changes in Lake Victoria's water quality coincide with fluctuations in cichlid gill surface area, suggesting that these fish can respond rapidly to environmental perturbations, but also that climatic variability, together with continued eutrophication, might be detrimental to the lake's cichlid biodiversity.


Assuntos
Ciclídeos , Lagos , Animais , Biodiversidade , Eutrofização , Brânquias
2.
Evolution ; 69(1): 179-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403383

RESUMO

Rapid morphological changes in response to fluctuating natural environments are a common phenomenon in species that undergo adaptive radiation. The dramatic ecological changes in Lake Victoria provide a unique opportunity to study environmental effects on cichlid morphology. This study shows how four haplochromine cichlids adapted their premaxilla to a changed diet over the past 30 years. Directly after the diet change toward larger and faster prey in the late 1980s, the premaxilla (upper jaw) changed in a way that is in agreement with a more food manipulating feeding style. During the 2000s, two zooplanktivorous species showed a reversal of morphological changes after returning to their original diet, whereas two other species showed no reversal of diet and morphology. These rapid changes indicate a potential for extremely fast adaptive responses to environmental fluctuations, which are likely inflicted by competition release and increase, and might have a bearing on the ability of haplochromines to cope with environmental changes. These responses could be due to rapid genetic change or phenotypic plasticity, for which there is ample evidence in cichlid fish structures associated with food capture and processing. These versatile adaptive responses are likely to have contributed to the fast adaptive radiation of haplochromines.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Evolução Molecular , Maxila/anatomia & histologia , Animais , Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Dieta , Zooplâncton
3.
J Hum Evol ; 77: 107-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25070910

RESUMO

From c. 2 Ma (millions of years ago) onwards, hominin brain size and cognition increased in an unprecedented fashion. The exploitation of high-quality food resources, notably from aquatic ecosystems, may have been a facilitator or driver of this phenomenon. The aim of this study is to contribute to the ongoing debate on the possible role of aquatic resources in hominin evolution by providing a more detailed nutritional context. So far, the debate has focused on the relative importance of terrestrial versus aquatic resources while no distinction has been made between different types of aquatic resources. Here we show that Indian Ocean reef fish and eastern African lake fish yield on average similarly high amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA). Hence a shift from exploiting tropical marine to freshwater ecosystems (or vice versa) would entail no material difference in dietary long-chain polyunsaturated fatty acid (LC-PUFA) availability. However, a shift to marine ecosystems would likely mean a major increase in access to brain-selective micronutrients such as iodine. Fatty fish from marine temperate/cold waters yield twice as much DHA and four times as much EPA as tropical fish, demonstrating that a latitudinal shift in exploitation of African coastal ecosystems could constitute a significant difference in LC-PUFA availability with possible implications for brain development and functioning. We conclude that exploitation of aquatic food resources could have facilitated the initial moderate hominin brain increase as observed in fossils dated to c. 2 Ma, but not the exceptional brain increase in later stages of hominin evolution. We propose that the significant expansion in hominin brain size and cognition later on may have been aided by strong directional selecting forces such as runaway sexual selection of intelligence, and nutritionally supported by exploitation of high-quality food resources in stable and productive aquatic ecosystems.


Assuntos
Evolução Biológica , Ácidos Graxos/análise , Hominidae/fisiologia , Alimentos Marinhos/análise , Animais , Antropologia Física , Dieta , Peixes , Fósseis , Humanos , Quênia
4.
Oecologia ; 87(4): 581-587, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313703

RESUMO

The relationship between relative body condition (deviation from expected mean body weight) and burying depth was investigated in five macro-zoo benthic species living in a marine intertidal habitat. Body weight increased with depth when animals of the same size were compared. The increase amounted to 50% in the clamScrobicularia plana, ca. 40% in the wormNereis diversicolor, 25% in the clamMacoma balthica and 20% in the cockleCerastoderma edule and the clamMya arenaria. Only a part of the prey was within reach of some feeding wader species. Therefore prey value may be overestimated if one does not take into account the fact that shallow and accessible prey often have a relatively poor body condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...