Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Microbiol ; 2020: 4063697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695175

RESUMO

Losses associated with stem end rot (SER) of avocado fruits have been reported in all avocado growing regions of the world. In Kenya, mature avocado fruits present SER symptoms during storage and marketing, but the disease causal agent(s) has not been established. This study aimed to identify the fungal pathogen(s) associated with avocado SER in Kenya and evaluate its pathogenicity. Fungal isolates were collected from symptomatic avocado fruits from randomly selected orchards and major markets within Murang'a County, a major avocado growing region in Kenya, between September 2017 and March 2018. A total of 207 and 125 fungal isolates, recovered from orchards and major markets, respectively, were identified morphologically and further confirmed by molecular techniques. The identified isolates were Lasiodiplodia theobromae (39.8%), Neofusicoccum parvum (24.4%), Nectria pseudotrichia (18.4%), Fusarium solani (7.2%), F. oxysporum (5.1%), F. equiseti (3.9%), and Geotricum candidum (1.2%). Geotricum candidum was exclusively recovered from fruits from the market. In the pathogenicity test, L. theobromae, N. parvum, and N. pseudotrichia caused the most severe SER symptoms. Consequently, they were considered to be the major pathogens of SER of avocado fruits in Kenya. To our knowledge, this is the first report of SER pathogen of avocado fruits in Kenya. Given the significant contribution of avocado fruits to household income and foreign exchange in Kenya, this information is significant to further develop management strategies of postharvest loss of avocado fruits in Kenya.

2.
3 Biotech ; 5(4): 465-472, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324550

RESUMO

Cassava is an important food for millions of people around the world. However, cassava is deficient in protein, iron, zinc, pro-vitamin A and vitamin E. Cassava biofortified with pro-vitamin A can help reduce Vitamin A Deficiency among the undernourished communities that rely upon it for sustenance. BioCassava Plus project has developed transgenic cassava that expresses beta carotene in roots using root specific patatin promoter. This study aimed at confirming expression of nptII, crtB and DXS genes. Leaf and roots samples were obtained from confined field trial at KARI Alupe at 12 months after planting. RNA was isolated from cassava roots and leaves using a modified Dellaporta protocol, analyzed for expression of DXS, crtB and the selectable marker, nptII using the one step RT-PCR kit (Qiagen) and analyzed through gel electrophoresis. DXS, crtB and nptII genes were expressed in the roots as anticipated. On the contrary, DXS and crtB genes were also expressed in the leaves of the transgenic cassava despite the use of root specific patatin promoter. This finding indicates that the promoter confers expression in leaves too. Intensive molecular screening of the biofortified transgenic cassava is important for risk assessment that informs on integrity of the promoter gene and confirms expression of the beta carotene genes.

3.
Phys Rev Lett ; 109(12): 125504, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005959

RESUMO

Noble-transition metal (noble=Pt,Au; transition=Co,Ni,Cu) alloy particles with sizes of about 5 nm have been studied by in situ high-energy x-ray diffraction while subjected to oxidizing (O(2)) and reducing (H(2)) gas atmospheres at elevated temperatures. The different gas atmospheres do not affect substantially the random alloy, face-centered-cubic structure type of the particles but do affect the way the metal atoms pack together. In an O(2) atmosphere, atoms get extra separated from each other, whereas, in an H(2) atmosphere, they come closer together. The effect is substantial, amounting to 0.1 Å difference in the first neighbor atomic distances, and concurs with a dramatic change of the particle catalytic properties. It is argued that such reactive gas induced "expansion shrinking" is a common phenomenon that may be employed for the engineering of "smart" nanoparticles responding advantageously to envisaged gas environments.

4.
Nanotechnology ; 23(33): 335705, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22863867

RESUMO

High-temperature sintering of ternary Pt(x)Ni(100-x-y)Co(y) (x = 28-44%, y = 40-54%) nanoparticles of interest in catalysis was studied in situ and in real-time with synchrotron-based x-ray diffraction. For the first time we were able to experimentally capture the early stage of the thermal treatment, and found the nanoparticles to undergo an unusual two-step coalescence process that involves transient growth and restructuring of the nanoparticles. The coalescence process is accompanied by lattice contraction, likely due to composition evolution towards a random alloy. In the late stage of sintering, evidence was found for self-limited grain growth and L1(0) chemical ordering. The order-disorder transition temperature was found to be around 800 °C in all four ternary alloy compositions studied. Fitting of the experimental data with the model for grain growth with size-dependent impediment leads to an activation energy for mass transport of about 100 kJ mol(-1), and may be used as a predictive tool to estimate particle size as a function of heat treatment temperature and duration.

5.
Nanotechnology ; 22(2): 025701, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21135475

RESUMO

In situ real-time x-ray diffraction was used to study temperature-induced structural changes of 1-5 nm Au, Pt, and AuPt nanocatalysts supported on silicon substrates. Synchrotron-based x-ray diffraction indicates that the as-synthesized Au and Au(64)Pt(36) nanoparticles have a non-crystalline structure, while the Pt nanoparticles have the expected cubic structure. The nanoparticles undergo dramatic structural changes at temperatures as low as 120 °C. During low-temperature annealing, the Au and AuPt nanoparticles first melt and then immediately coalesce to form 4-5 nm crystalline structures. The Pt nanoparticles also aggregate but with limited intermediate melting. The detailed mechanisms of nucleation and growth, though, are quite different for the three types of nanoparticles. Most interestingly, solidification of high-density AuPt nanoparticles involves an unusual transient morphological transformation that affects only the surface of the particles. AuPt nanoparticles on silicon undergo partial phase segregation only upon annealing at extremely high temperatures (800 °C).

6.
Nanotechnology ; 20(24): 245708, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471088

RESUMO

In situ real-time x-ray diffraction was used to study phase segregation and coarsening of Au-Pt nanoparticles supported on silica powder, and porous alumina membranes. Contrary to the expectations from the bulk phase diagram, silica supported Au-Pt nanoparticles have an alloyed structure that is preserved even after extensive annealing at temperatures as high at 700 degrees C. In stark contrast, alumina supported Au-Pt nanoparticles exhibit a rich phase behaviour that is sensitive to alloy composition and the details of the synthesis process. In particular, low-density as-prepared Au(41)Pt(59) nanoparticles exhibit the signature of incipient phase segregation that develops into full phase separation during annealing at high temperature.


Assuntos
Coloides/química , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Platina/química , Difração de Raios X/métodos , Sistemas Computacionais , Cristalização/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...