Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 45(4): 402-408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35332549

RESUMO

To date, the number of green sea and hawksbill sea turtles is in decline due to environmental, anthropogenic, and pathological factors. The present study described the pharmacokinetic characteristics of danofloxacin (DNX) in green sea and hawksbill sea turtles, following single intravenous (i.v.) and intramuscular (i.m.) administrations at single dosages of 6 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 h. DNX in the harvested plasma was cleaned up using liquid-liquid extraction and analyzed using a validated high-performance liquid chromatography method with fluorescence detection. The pharmacokinetic analysis was performed using a non-compartmental approach. DNX was quantifiable from 5 min to 168 h after i.v. and i.m. administrations at an identical dosage in both turtle types. No statistical differences were found in the pharmacokinetic parameters between green sea and hawksbill sea turtles. The long elimination half-life value of DNX obtained in green sea (35 h) and hawksbill sea (30.21 h) turtles was consistent with the quite large volume of distribution and the slow clearance rate. The high values of absolute bioavailability (87%-94%) should be advantageous for clinical use of DNX in sea turtles. According to the pharmacokinetic-pharmacodynamic surrogate (AUC0-24 /MIC > 125), DNX is predicted to have antibacterial success for disease caused by bacteria with MIC < 0.04 µg/ml.


Assuntos
Tartarugas , Administração Intravenosa/veterinária , Animais , Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética
2.
Vet World ; 13(6): 1229-1233, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32801577

RESUMO

AIM: The objective of this study was to assess a new lead system method to improve electrocardiographic measurement in horses. MATERIALS AND METHODS: Twenty-two horses with an average age of 8.8±0.8 years were enrolled in this study. Horses were divided into two groups, consisting of a control group (n=11) and athlete group (n=11). Electrocardiography (ECG) and echocardiography were performed to provide information on the structure and function of the heart. Two lead systems, base apex and modified precordial leads, were used for the electrocardiogram to assess the cardiac electrophysiological functions. RESULTS: PR interval, QT interval, and QRS-T angle presented significant differences between the control and athlete groups when the modified precordial lead system was used. However, significant variations in the mean electrical axis were found when the base apex lead system was used. The modified precordial lead system resulted in more significant differences in cardiac electrophysiological parameters than the base apex lead system. In the athlete group, echocardiography showed cardiac adaptations such as increases in the left atrial and left ventricular dimensions and stroke volume and a decrease in heart rate in response to exercise and training. The observed differences in cardiac morphology and function between groups suggested differences in health performance in the athlete group. CONCLUSION: These data provided the first evidence that the modified precordial lead system improved statistical variation in ECG recording and provided the most reliable method for health screening in horses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...