Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(12): 5321-5333, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34312983

RESUMO

The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a highly invasive and harmful pest. It causes considerable loss of cotton crops in China, India and Pakistan. Little is known about its bionomics since it was first recorded in Pakistan and India in 2005. Rapid spread of this pest worldwide has accelerated research on its biology, ecology and management. The P. solenopsis has a short life cycle, and optimal temperatures lead to an increase in the number of generations per year, which is a serious threat to cotton crop production. Cotton mealybug is native to the USA, although it has now spread to >43 countries. Insecticidal control is the primary and dominant practice for this pest, and its resistance to commonly used insecticides is increasing. Biocontrol agents have strong potential for the management of nymphal instar stages. We read >250 articles related to our review title and finally reviewed recent advances in the understanding of P. solenopsis biology, ecology and control approaches, aiming to highlight integrated and biological management practices of this pest. © 2021 Society of Chemical Industry.


Assuntos
Hemípteros , Inseticidas , Animais , Ecologia , Gossypium , Índia
2.
J Anim Sci ; 97(4): 1468-1477, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576512

RESUMO

Male reproductive capacity is a critical component of cattle production and the majority of genetic gain is made via selective utilization of gametes from desirable sires. Thus, strategies that enhance sperm production increase the availability of elite genetics for use in improving production characteristics of populations on a worldwide scale. In all mammals, the amount of sperm produced is strongly correlated to the number of Sertoli cells in testes. Studies with rodents showed that the size of the Sertoli cell population is set during prepubertal development via signaling from thyroid hormones. Here, we devised a strategy to increase Sertoli cell number in bulls via induction of a transient hypothyroidic state just prior to and extending beyond the period of Sertoli cell proliferation that we found to normally cease between 4.5 and 5 mo of age. In adulthood, these bulls produced a significantly greater number of sperm compared to age-matched controls and their testes contained nearly 2 times more Sertoli cells. Importantly, sperm motility, morphology, fertilizing ability, and viability after cryopreservation were found to be no different for treated bulls compared to untreated control bulls. This strategy of transient induction of hypothyroidism during a defined period of prepubertal development in bulls could prove to be an efficacious approach for enhancing daily sperm production in genetically desirable sires that will, in turn, provide an avenue for improving the efficiency of commercial cattle production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...