Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(18): 5695-5707, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35476120

RESUMO

Diabetic nephropathy (DN) is a serious diabetic complication, usually developed from type II diabetes mellitus (T2DM) and known as type II DN (T2DN). New emerging biomarkers for T2DN are microRNAs (miRNAs) which have been studied for the noninvasive early-stage detection of the disease. In this work, a nucleic acid amplification-free miRNA-124 sensor based on target-induced strand displacement on magnetic beads, and by using methylene blue-loaded silica particles as a label was developed. Measurement methods can be either visual observation, spectrophotometry, or electrochemistry. After incubation and separation of the magnetic particles, a blue-violet solution (564 nm) appeared, depending on the concentration of miRNA displaced. For electrochemical detection, methylene blue on the silica served as a redox mediator for the coupled reaction with ferricyanide in the solution phase. At the electrode surface, ferricyanide was re-reduced to ferrocyanide, and was thus available for further reaction with methylene blue, forming an amplification cycle. After optimization, the total assay time was 60 min, and limits of detection were 1 pM, 6 fM, and 0.65 fM, by the naked eye, spectrophotometry and electrochemistry, respectively. The miRNAs in 42 suspected urine samples from patients suffering from either diabetic nephropathy, diabetes mellitus, or chronic kidney disease were validated by comparing with the droplet digital polymerase chain reaction (ddPCR).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , MicroRNAs , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/diagnóstico , Ferricianetos , Humanos , Azul de Metileno , MicroRNAs/análise , Dióxido de Silício
2.
Anal Chim Acta ; 1154: 338302, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736810

RESUMO

We report a new highly selective detection platform for human albumin (HA) in urine based on aptamer-functionalised magnetic particles. Magnetic separation and re-dispersion was utilised to expose the HA-bound particles to a methylene blue solution. A second magnetic collection step was then used to allow the methylene blue supernatant to be reduced at an unmodified screen-printed electrode. Since methylene blue adsorbs to HA, the reduction current fell in proportion to HA concentration. There was no interference from compounds such as dopamine, epinephrine, vanillylmandelic acid, normetanephrine, metanephrine and creatinine in artificial urine at the concentrations at which they would be expected to appear. A calibration equation was derived to allow for the effect of pH on the response. This enabled measurement to be made directly in clinical urine samples of varying pH. After optimisation of experimental parameters, the total assay time was 40 min and the limit of detection was between 0.93 and 1.16 µg mL-1, depending on the pH used. HA could be detected up to 400 µg mL-1, covering the range from normoalbuminuria to macroalbuminuria. Analysis of urine samples of patients, with diabatic nephropathy, type I & II diabetes mellitus and chronic kidney disease, from a local hospital showed good agreement with the standard urinary human albumin detection method.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Albuminúria/diagnóstico , Creatinina , Nefropatias Diabéticas/diagnóstico , Humanos , Rim , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...