Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(21): 8379-8388, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37191662

RESUMO

The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (Ag3Sb), and binary or ternary metal sulfide (Ag2S and AgSbS2) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and Ag3Sb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic Ag3Sb.

2.
Environ Sci Pollut Res Int ; 30(22): 62689-62703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944836

RESUMO

In this paper, green nanocomposites based on biomass and superparamagnetic nanoparticles were synthesized and used as adsorbents to remove methylene blue (MB) from water with magnetic separation. The adsorbents were synthesized through the wet co-precipitation technique, in which iron-oxide nanoparticles coated the cores based on coffee, cellulose, and red volcanic algae waste. The procedure resulted in materials that could be easily separated from aqueous solutions with magnets. The morphology and chemical composition of the nanocomposites were characterized by SEM, FT-IR, and XPS methods. The adsorption studies of MB removal with UV-vis spectrometry showed that the adsorption performance of the prepared materials strongly depended on their morphology and the type of the organic adsorbent. The adsorption studies presented the highest effectiveness in neutral pH with only a slight effect on ionic strength. The MB removal undergoes pseudo-second kinetics for all adsorbents. The maximal adsorption capacity for the coffee@Fe3O4-2, cellulose@Fe3O4-1, and algae@Fe3O4-1 is 38.23 mg g-1, 41.61 mg g-1, and 48.41 mg g-1, respectively. The mechanism of MB adsorption follows the Langmuir model using coffee@Fe3O4 and cellulose@Fe3O4, while for algae@Fe3O4 the process fits to the Redlich-Peterson model. The removal efficiency analysis based on UV-vis adsorption spectra revealed that the adsorption effectiveness of the nanocomposites increased as follows: coffee@Fe3O4-2 > cellulose@Fe3O4-1 > algae@Fe3O4-1, demonstrating an MB removal efficiency of up to 90%.


Assuntos
Nanopartículas de Magnetita , Rodófitas , Poluentes Químicos da Água , Azul de Metileno/química , Café , Biomassa , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Poluentes Químicos da Água/química , Cinética
3.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985530

RESUMO

The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of environmental protection as well as the scarcity of metal resources. In this paper, we propose for the first time a functional material-a magnetorheological fluid (MRF) from the LIBs-based liquid waste containing heavy metal ions. At first, the spent battery waste powder was treated with acid-leaching, where the post-treatment acid-leaching solution (ALS) contained heavy metal ions including cobalt. Then, ALS was used during wet co-precipitation to obtain cobalt-doped superparamagnetic iron oxide nanoparticles (SPIONs) and as an effect, the harmful liquid waste was purified from cobalt. The obtained nanoparticles were characterized with SEM, TEM, XPS, and magnetometry. Subsequently, superparamagnetic nanoparticles sized 15 nm average in diameter and magnetization saturation of about 91 emu g-1 doped with Co were used to prepare the MRF that increases the viscosity by about 300% in the presence of the 100 mT magnetic fields. We propose a facile and cost-effective way to utilize harmful ALS waste and use them in the preparation of superparamagnetic particles to be used in the magnetorheological fluid. This work describes for the first time the second life of the battery waste in the MRF and a facile way to remove the harmful ingredients from the solutions obtained after the acid leaching of LIBs as an effective end-of-life option for hydrometallurgical waste utilization.

5.
Chem Commun (Camb) ; 54(94): 13287, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30411111

RESUMO

Correction for 'Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide' by Magdalena Warczak et al., Chem. Commun., 2018, 54, 1960-1963.

6.
Chem Commun (Camb) ; 54(20): 2566, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29484315

RESUMO

Correction for 'Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide' by Magdalena Warczak et al., Chem. Commun., 2018, DOI: .

7.
Chem Commun (Camb) ; 54(16): 1960-1963, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29323369

RESUMO

Hydrogen peroxide is one of the most important industrial chemicals and there is great demand for the production of H2O2 using more sustainable and environmentally benign methods. We show electrochemical production of H2O2 by the reduction of O2, enabled by an organic semiconductor catalyst, N,N'-dimethyl perylenetetracarboxylic diimide (PTCDI). We make PTCDI cathodes that are capable of stable and reusable operation in aqueous electrolytes in a pH range of 1-13 with a catalytic figure of merit as high as 26 g H(2)O(2) per g catalyst per h. [corrected] These performance and stability open new avenues for organic small molecule semiconductors as electrocatalysts.

8.
J Phys Chem B ; 113(19): 6682-91, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19361175

RESUMO

Thin films of a new composite of an electroactive fullerene-based (C60-Pd) polymer and HiPCO single-wall carbon nanotubes, which were noncovalently modified by 1-pyrenebutiric acid (pyr-SWCNTs), were electrochemically prepared under multiscan cyclic voltammetry conditions. With respect to blank polymer, superior conductive, capacitive, and viscoelasitic properties of the composite were demonstrated. Composition of pyr-SWCNTs was determined by thermogravimetric analyses, which showed one molecule of 1-pyrenebutiric acid per approximately 20 carbon atoms of SWCNT. Atomic force microscopy imaging revealed that pyr-SWCNTs form tangles of pyr-SWCNTs bundles surrounded by globular clusters of the C60-Pd polymer. Peaks characteristic of both pyr-SWCNTs (radial breathing modes at approximately 200 to 300 cm(-1)) and C60-Pd polymer in the Raman spectra recorded for the composite confirmed the presence of pyr-SWCNTs in the composite film. The mass of the deposited film was in situ measured by piezoelectric microgravimetry with the use of an electrochemical quartz crystal microbalance (EQCM). Then, curves of the current, resonant frequency change, and dynamic resistance change versus the potential in different potential ranges were simultaneously recorded in a blank acetonitrile solution of tetrabutylammonium perchlorate. Specific capacitance, determined at -1.20 V for the composite as 90 F g(-1), was twice as high as that for the polymer. Electrochemical impedance spectroscopy was used to determine impedance parameters of both the C60-Pd polymer and C60-Pd/pyr-SWCNTs composite film. This data analysis indicated increased capacitance and decreased resistance for the new composite film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...