RESUMO
The Black Brant is a common inhabitant of the Western Artic American tundra, which migrates to Southern Pacific coasts during the winter season. Approximately, 31000 birds (31%) constitute the Mexican population of Brants at Guerrero Negro, Ojo de Liebre, and Exportadora de Sal lagoon complex; nevertheless, there is little information about the distribution patterns and zone usage. At Guerrero Negro Lagoon (GNL), Ojo de Liebre Lagoon (OLL, both natural sites), and at Exportadora de Sal (ESSA, artificial site) we determined by monthly censuses (from November 2006 to April 2007, 08:00-16:00h) and observed: (1) season and site effects on population structure (age groups), and (2) the tide level relationship with the abundance and proportion of feeding birds. Within a total of 150 observation hours and 98 birds, our results showed a general 0.68 proportion of adults, that was higher in winter than in spring. The statistics analysis showed no effects by site on the proportion of feeding birds, but we observed a temporal decrease at ESSA and at GNL. In contrast the proportion of feeding birds at OLL was constant. We observed an increase in the juveniles between winter and spring. This increase is related with the differential migration, which mentions that the juveniles are the last to leave the wintering area. In winter the relations of the tide level with the abundance of Brant were: direct at ESSA, inverse at OLL and no relation found at GNL. In spring, no relation was observed in the sites. The proportion of Brants feeding at OLL (the site with the higher abundance) was independent of the tide level. This is related with two possible behaviors of the geese: (1) they can move through the lagoon and take advantage of the tidal lag, which is up to four hours; and (2) they can modify their feeding strategies, more on floating eelgrass (Zostera marina).
Assuntos
Migração Animal/fisiologia , Anseriformes/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Anseriformes/classificação , México , Densidade Demográfica , Dinâmica Populacional , Estações do AnoRESUMO
The Black Brant is a common inhabitant of the Western Artic American tundra, which migrates to Southern Pacific coasts during the winter season. Approximately, 31 000 birds (31%) constitute the Mexican population of Brants at Guerrero Negro, Ojo de Liebre, and Exportadora de Sal lagoon complex; nevertheless, there is little information about the distribution patterns and zone usage. At Guerrero Negro Lagoon (GNL), Ojo de Liebre Lagoon (OLL, both natural sites), and at Exportadora de Sal (ESSA, artificial site) we determined by monthly censuses (from November 2006 to April 2007, 08:00-16:00h) and observed: (1) season and site effects on population structure (age groups), and (2) the tide level relationship with the abundance and proportion of feeding birds. Within a total of 150 observation hours and 98 birds, our results showed a general 0.68 proportion of adults, that was higher in winter than in spring. The statistics analysis showed no effects by site on the proportion of feeding birds, but we observed a temporal decrease at ESSA and at GNL. In contrast the proportion of feeding birds at OLL was constant. We observed an increase in the juveniles between winter and spring. This increase is related with the differential migration, which mentions that the juveniles are the last to leave the wintering area. In winter the relations of the tide level with the abundance of Brant were: direct at ESSA, inverse at OLL and no relation found at GNL. In spring, no relation was observed in the sites. The proportion of Brants feeding at OLL (the site with the higher abundance) was independent of the tide level. This is related with two possible behaviors of the geese: (1) they can move through the lagoon and take advantage of the tidal lag, which is up to four hours; and (2) they can modify their feeding strategies, more on floating eelgrass (Zostera marina).
En el complejo lagunar Guerrero Negro-Ojo de Liebre-Exportadora de Sal inverna el 31% de la población de Ganso de collar (Branta bernicla nigricans) que utiliza México (31 000 aves en promedio). Nosotros realizamos censos de punto mensuales (noviembre 2006 a abril 2007) en tres sitios para determinar: (1) los efectos de la época del año y del sitio en la estructura poblacional (grupos de edad) y (2) la relación del nivel de marea con la abundan- cia y la proporción de aves alimentándose. La proporción general de adultos fue de 0.68. Esta proporción fue mayor en invierno que en primavera. Por sitio en LGN y ESSA disminuyó y en LOL se mantuvo constante. El incremento de aves inmaduras entre el invierno y la primavera se relaciona con su partida primaveral tardía. La alimentación del Ganso de collar en LOL (el sitio de mayor abundancia) fue independiente del nivel de marea, lo que se puede relacionar con dos conductas: (1) que las aves se muevan a lo largo de la laguna, para aprovechar el desfase, de hasta cuatro horas en el nivel de marea o (2) que modifiquen sus estrategias de alimentación, para consumir el pasto flotante.
Assuntos
Animais , Migração Animal/fisiologia , Anseriformes/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Anseriformes/classificação , México , Densidade Demográfica , Dinâmica Populacional , Estações do AnoRESUMO
We used observations of individually marked female black brant geese (Branta bernicla nigricans; brant) at three wintering lagoons on the Pacific coast of Baja California-Laguna San Ignacio (LSI), Laguna Ojo de Liebre (LOL), and Bahía San Quintín (BSQ)-and the Tutakoke River breeding colony in Alaska to assess hypotheses about carryover effects on breeding and distribution of individuals among wintering areas. We estimated transition probabilities from wintering locations to breeding and nonbreeding by using multistratum robust-design capture-mark-recapture models. We also examined the effect of breeding on migration to wintering areas to assess the hypothesis that individuals in family groups occupied higher-quality wintering locations. We used 4,538 unique female brant in our analysis of the relationship between winter location and breeding probability. All competitive models of breeding probability contained additive effects of wintering location and the 1997-1998 El Niño-Southern Oscillation (ENSO) event on probability of breeding. Probability of breeding in non-ENSO years was 0.98 ± 0.02, 0.68 ± 0.04, and 0.91 ± 0.11 for females wintering at BSQ, LOL, and LSI, respectively. After the 1997-1998 ENSO event, breeding probability was between 2% (BSQ) and 38% (LOL) lower than in other years. Individuals that bred had the highest probability of migrating the next fall to the wintering area producing the highest probability of breeding.
Assuntos
Migração Animal , Ecossistema , Gansos/fisiologia , Reprodução , Comportamento Social , Alaska , Animais , El Niño Oscilação Sul , Feminino , Aptidão Genética , México , Modelos Biológicos , Dinâmica Populacional , Estações do AnoRESUMO
Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Niño and non-El Niño years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Niño event since 1965. Fewer brant were observed on the principal breeding area following each El Niño since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter. Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Niño event in the winter of 1997-1998 than in non-El Niño years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska.