Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 8(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35735727

RESUMO

Carbotrace 480 is a commercially available fluorescent optotracer that specifically binds to cellulose's glycosidic linkages. Herein, the use of Carbotrace 480 is reported as an analytical tool for linking cellulose content to hydrogel formation capability in defibrillated celluloses obtained from proprietary microalgae. Defibrillated celluloses obtained from acid-free hydrothermal microwave processing at low temperature (160 °C) showed poor hydrogel formation attributed to a low cellulose concentration as evidenced through the lack of Carbotrace fluorescence. High temperature (220 °C) processing afforded reasonable gels commensurate with a higher cellulose loading and stronger response to Carbotrace.

2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443557

RESUMO

The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae ("standard"), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.


Assuntos
Microalgas/metabolismo , Microalgas/efeitos da radiação , Micro-Ondas , Celulose/biossíntese , Celulose/química , Temperatura , Água/química
3.
Asia Pac J Clin Nutr ; 27(5): 1002-1009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272848

RESUMO

BACKGROUND AND OBJECTIVES: Low HDL concentrations are considered an important risk factor for cardiovascular disease. Interventions promoting a low-fat, plant-based eating pattern appear to reduce CVD risk while paradoxically also reducing HDL concentrations. Recent studies show HDL to comprise a range of subfractions, but the role these play in ameliorating the risk of CVD is unclear. The purpose of this study was to characterise changes in HDL subfractions in participants where HDL decreased following the CHIP intervention which promotes a low-fat, plant-based diet, with physical activity. METHODS AND STUDY DESIGN: Individuals (n=22; mean age=55.4±16.3 years; 45.5% men, 54.5% women) participating in a CHIP intervention were assessed at baseline and 30 days for changes in BMI, blood pressure, lipid profile, (including large-, intermediate- and small-HDL subfractions) and fasting glucose. RESULTS: HDL significantly decreased (10.6%, p<0.001) together with BMI (2.5%, p=0.028), systolic blood pressure (7.1%, p=-0.005), total cholesterol (9.5%, p=0.002), LDL (11.2%, p=0.007) and fasting glucose (8.2%, p=0.028). Triglycerides (TG) did not significantly change. Physical activity (22.7%, p=0.016) and consumption of whole plant-foods (13.9%, p=0.003) significantly increased, while nonplant (energy and animal) foods decreased (43.1%, p=0.009). Large-, intermediate- and small-HDL decreased (-10.0%, p=0.003; -8.3%, p=0.013 and 22%, p=0.005, respectively). CONCLUSIONS: This paper discusses specific changes in HDL subfractions when overall-HDL decreases as a response to low fat, whole-food, plant-based eating and exercise. Additional research is required to elucidate the reasons through which behavioural therapies remodel the HDL particle and how this impacts the functional properties of HDL and CVD risk.


Assuntos
HDL-Colesterol/sangue , Dieta com Restrição de Gorduras/métodos , Promoção da Saúde/métodos , Nível de Saúde , Avaliação de Programas e Projetos de Saúde/métodos , Glicemia , Pressão Sanguínea , Índice de Massa Corporal , Feminino , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade
4.
Nutr Metab (Lond) ; 10(1): 58, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24283215

RESUMO

BACKGROUND: Low levels of high-density lipoproteins (HDL) are considered an important risk factor for cardiovascular disease and constitute one of the criteria for the Metabolic Syndrome (MetS). Lifestyle interventions promoting a low-fat, plant-based eating pattern appear to paradoxically reduce cardiovascular risk but also HDL levels. This study examined the changes in MetS risk factors, in particular HDL, in a large cohort participating in a 30-day lifestyle intervention that promoted a low-fat, plant-based eating pattern. METHODS: Individuals (n = 5,046; mean age = 57.3 ± 12.9 years; 33.5% men, 66.5% women) participating in a in a Complete Health Improvement Program (CHIP) lifestyle intervention within the United States were assessed at baseline and 30 days for changes in body mass index (BMI), blood pressure (BP), lipid profile and fasting plasma glucose (FPG). RESULTS: HDL levels decreased by 8.7% (p<0.001) despite significant reductions (p<0.001) in BMI (-3.2%), systolic BP (-5.2%), diastolic BP (-5.2%), triglycerides (TG; -7.7%), FPG (-6.3%), LDL (-13.0%), total cholesterol (TC, -11.1%), TC: HDL ratio (-3.2%), and LDL: HDL ratio (-5.3%). While 323 participants classified as having MetS at program entry no longer had this status after the 30 days, 112 participants acquired the MetS classification as a result of reduction in their HDL levels. CONCLUSIONS: When people move towards a low-fat, plant-based diet, HDL levels decrease while other indicators of cardiovascular risk improve. This observation raises questions regarding the value of using HDL levels as a predictor of cardiovascular risk in populations who do not consume a typical western diet. As HDL is part of the assemblage of risk factors that constitute MetS, classifying individuals with MetS may not be appropriate in clinical practice or research when applying lifestyle interventions that promote a plant-based eating pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...