Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammary Gland Biol Neoplasia ; 23(3): 109-123, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29876871

RESUMO

Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2-/- virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2-/- mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2-/- glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2-/- relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2-/- mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Carcinogênese/metabolismo , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Desmame
2.
Cytotechnology ; 68(6): 2257-2269, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757713

RESUMO

Engraftment outcomes are strongly correlated with the numbers of hematopoietic stem and progenitor cells (HSPC) infused. Expansion of umbilical cord blood (CB) HSPC has gained much interest lately since infusion of expanded HSPC can accelerate engraftment and improve clinical outcomes. Many novel protocols based on different expansion strategies of HSPC and their downstream derivatives are under development. Herein, we describe the production and properties of serum-free medium (SFM) conditioned with mesenchymal stromal cells derived-osteoblasts (OCM) for the expansion of umbilical CB cells and progenitors. After optimization of the conditioning length, we show that OCM increased the production of human CB total nucleated cells and CD34+ cells by 1.8-fold and 1.5-fold over standard SFM, respectively. Production of immature CD34+ subpopulations enriched in hematopoietic stem cells was also improved with a shorter conditioning period. Moreover, we show that the growth modulatory activities of OCM on progenitor expansion are regulated by both soluble factors and non-soluble cellular elements. Finally, the growth and differentiation modulatory activities of OCM were fully retained after high dose-ionizing irradiation and highly stable when OCM is stored frozen. In summary, our results suggest that OCM efficiently mimics some of the natural regulatory activities of osteoblasts on HSPC and highlight the marked expansion potentials of SFM conditioned with osteoblasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...