Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Sci Adv ; 10(28): eadn2831, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996032

RESUMO

Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.


Assuntos
Células-Tronco Mesenquimais , Proteoma , Proteômica , Análise de Célula Única , Humanos , Proteômica/métodos , Proteoma/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Análise de Célula Única/métodos , Tecido Adiposo/metabolismo , Transcriptoma , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Perfilação da Expressão Gênica
2.
Brain Spine ; 4: 102807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712018

RESUMO

Introduction: Adult spinal deformity (ASD) is a debilitating pathology that arises from a variety of etiologies. Spinal fusion surgery is the mainstay of treatment for those who do not achieve symptom relief with conservative interventions. Fusion surgery can be complicated by a secondary deformity termed proximal junctional kyphosis (PJK). Research question: This scoping review evaluates the modern body of literature analyzing risk factors for PJK development and organizes these factors according to a multifactorial framework based on mechanical, tissue or demographic components. Materials and methods: An extensive search of the literature was performed in PubMed and Embase back to the year 2010. Articles were assessed for quality. All risk factors that were evaluated and those that significantly predicted the development of PJK were compiled. The frequency that a risk factor was predictive compared to the number of times it was evaluated was calculated. Results: 150 articles were reviewed. 57.3% of papers were of low quality. 76% of risk factors analyzed were focusing on the mechanical contribution to development of PJK versus only 5% were focusing on the tissue-based contribution. Risk factors that were most frequently predictive compared to how often they were analyzed were Hounsfield Units of vertebrae, UIV disc degeneration, paraspinal muscle cross sectional area and fatty infiltration, ligament augmentation, instrument characteristics, postoperative hip and lower extremity radiographic metrics, and postoperative teriparatide supplementation. Discussion and conclusion: This review finds a multifactorial framework accounting for mechanical, patient and tissue-based risk factors will improve the understanding of PJK development.

3.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798320

RESUMO

A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from female mice at four times-of-day (Zeitgeber Times 1, 7, 13, 19). Significantly, while both muscles demonstrated circadian-related changes in gene expression, intrinsic contractile function, endurance, and contraction-stimulated glucose uptake were not different between the four time points. Overall, these results demonstrate that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake. Impact statement: Ex vivo testing demonstrates that there is no time-of-day variation in the intrinsic contractile properties of skeletal muscle (including no effect on force production or endurance) or contraction-stimulated glucose uptake.

4.
Exp Physiol ; 109(6): 939-955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643471

RESUMO

Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.


Assuntos
Músculo Esquelético , Resistência Física , Treinamento Resistido , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido/métodos , Resistência Física/fisiologia , Animais , Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Modelos Biológicos
5.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581669

RESUMO

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Assuntos
Endopeptidases , Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Fibroblastos/metabolismo
6.
J Exp Biol ; 227(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357776

RESUMO

A skeletal muscle's peak force production and excursion are based on its architectural properties that are, in turn, determined by its mass, muscle fiber length and physiological cross-sectional area (PCSA). In the classic interspecific study of mammalian muscle scaling, it was demonstrated that muscle mass scales positively allometrically with body mass whereas fiber length scales isometrically with body mass, indicating that larger mammals have stronger leg muscles than they would if they were geometrically similar to smaller ones. Although this relationship is highly significant across species, there has never been a detailed intraspecific architectural scaling study. We have thus created a large dataset of 896 muscles across 34 human lower extremities (18 females and 16 males) with a size range including approximately 90% and 70% of the United States population height and mass, respectively, across the range 36-103 years. Our purpose was to quantify the scaling relationships between human muscle architectural properties and body size. We found that human muscles depart greatly from isometric scaling because muscle mass scales with body mass1.3 (larger exponent than isometric scaling of 1.0) and muscle fiber length scales with negative allometry with body mass0.1 (smaller exponent than isometric scaling of 0.33). Based on the known relationship between architecture and function, these results suggest that human muscles place a premium on muscle force production (mass and PCSA) at the expense of muscle excursion (fiber length) with increasing body size, which has implications for understanding human muscle design as well as biomechanical modeling.


Assuntos
Perna (Membro) , Músculo Esquelético , Humanos , Animais , Masculino , Feminino , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Tamanho Corporal , Mamíferos , Extremidade Inferior
7.
J Orthop Res ; 42(6): 1170-1179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38245849

RESUMO

A common animal model of muscle pathology following rotator cuff tear (RCT) is a tenotomy of the supraspinatus and infraspinatus, often combined with neurotomy of the suprascapular nerve, which induces a more robust atrophy response than tenotomy alone. However, the utility of this model depends on its similarity to human muscle pathology post-RCT, both in terms of the disease phenotype and mechanisms of muscle atrophy and fatty infiltration. Given the clinical prevalence of nerve injury is low and the muscular response to denervation is distinct from mechanical unloading in other models, an understanding of the biological influence of the nerve injury is critical for interpreting data from this RCT model. We evaluated the individual and combined effect of tenotomy and neurotomy across multiple biological scales, in a robust time-series in the mouse supraspinatus. Muscle composition, histological, and gene expression data related to muscle atrophy, degeneration-regeneration, fatty infiltration, and fibrosis were evaluated. Broadly, we found tenotomy alone caused small, transient changes in these pathological features, which resolved over the course of the study, while neurotomy alone caused a significant fatty atrophy phenotype. The dual injury group had a similar fatty atrophy phenotype to the neurotomy group, though the addition of tenotomy did marginally enhance the fat and connective tissue. Overall, these results suggest the most clinically relevant injury model, tenotomy alone, does not produce a clinically relevant phenotype. The dual injury model partially recapitulates the human condition, but it does so through a nerve injury, which is not well justified clinically.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Atrofia Muscular , Lesões do Manguito Rotador , Tenotomia , Animais , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Atrofia Muscular/etiologia , Manguito Rotador/cirurgia , Manguito Rotador/patologia , Manguito Rotador/inervação , Masculino , Camundongos
8.
JOR Spine ; 7(1): e1291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38222805

RESUMO

Background: Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise. Methods: Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes. Results: The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles. Conclusion: An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.

9.
JOR Spine ; 6(3): e1266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780825

RESUMO

Purpose: Previous research has demonstrated increased stiffness in the multifidus muscle compared to other paraspinal muscles at the fiber bundle level. We aimed to compare single fiber and fiber bundle passive mechanical properties of multifidus muscle: (1) in 40 patients undergoing primary versus revision surgery and (2) in muscle with mild versus severe fatty infiltration. Methods: The degree of muscle fatty infiltration was graded using the patients' spine magnetic resonance images. Average single fiber and fiber bundle passive mechanical properties across three tests were compared between primary (N = 30) and revision (N = 10) surgery status, between mild and severe fatty infiltration levels, between sexes, and with age from passive stress-strain tests of excised multifidus muscle intraoperative biopsies. Results: At the single fiber level, elastic modulus was unaffected by degree of fatty infiltration or surgery status. Female sex (p = 0.001) and younger age (p = 0.04) were associated with lower multifidus fiber elastic modulus. At the fiber bundle level, which includes connective tissue around fibers, severe fatty infiltration (p = 0.01) and younger age (p = 0.06) were associated with lower elastic modulus. Primary surgery also demonstrated a moderate, but non-significant effect for lower elastic modulus (p = 0.10). Conclusions: Our results demonstrate that female sex is the primary driver for reduced single fiber elastic modulus of the multifidus, while severity of fatty infiltration is the primary driver for reduced elastic modulus at the level of the fiber bundle in individuals with lumbar spine pathology.

10.
Hand (N Y) ; : 15589447231185585, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489098

RESUMO

BACKGROUND: Posterolateral rotatory instability (PLRI) results from lateral ulnar collateral ligament (LCL) deficiency. The lateral pivot shift test is used to diagnose PLRI but can be difficult to perform and is poorly tolerated. We present a new maneuver, the Posterior Radiocapitellar Subluxation Test (PRST), that we believe is easier to perform. The purpose of this study was to compare the efficacy and reproducibility of the PRST with the lateral pivot shift test. METHODS: We obtained 10 cadaveric upper extremity specimens, performed a Kocher approach on each, released the LCL origin in 5, then closed. The specimens were randomized, and 3 attending orthopedic surgeons and 1 resident blindly performed the PRST then the lateral pivot shift test after re-randomization and assessed presence or absence of PLRI. This process was repeated the following day. The data for each test were analyzed for sensitivity, specificity, and accuracy. RESULTS: For the blinded testing when comparing PRST with the pivot shift test, overall accuracy was 77.5%, compared with 67.5% (P = .03), sensitivity was 75.0%, compared with 50.0% (P = .003), and specificity was 80.0%, compared with 85.0% (P = .55). Conclusions: The PRST appears to be at least as accurate as the lateral pivot shift test, with comparable intraobserver and interobserver reliability.

11.
Front Physiol ; 14: 1164055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228812

RESUMO

Introduction: Rotator cuff tears are prevalent in the population above the age of 60. The disease progression leads to muscle atrophy, fibrosis, and fatty infiltration, which is not improved upon with surgical repair, highlighting the need to better understand the underlying biology impairing more favorable outcomes. Methods: In this study, we collected supraspinatus muscle tissue from 6 month old female rabbits who had undergone unilateral tenotomy for 8 weeks at 1, 2, 4, or 8 weeks post-repair (n = 4/group). RNA sequencing and enrichment analyses were performed to identify a transcriptional timeline of rotator cuff muscle adaptations and related morphological sequelae. Results: There were differentially expressed (DE) genes at 1 (819 up/210 down), 2 (776/120), and 4 (63/27) weeks post-repair, with none at 8 week post-repair. Of the time points with DE genes, there were 1092 unique DE genes and 442 shared genes, highlighting that there are changing processes in the muscle at each time point. Broadly, 1-week post-repair differentially expressed genes were significantly enriched in pathways of metabolism and energetic activity, binding, and regulation. Many were also significantly enriched at 2 weeks, with the addition of NIF/NF-kappaB signaling, transcription in response to hypoxia, and mRNA stability alongside many additional pathways. There was also a shift in transcriptional activity at 4 weeks post-repair with significantly enriched pathways for lipids, hormones, apoptosis, and cytokine activity, despite an overall decrease in the number of differentially expressed genes. At 8 weeks post-repair there were no DE genes when compared to control. These transcriptional profiles were correlated with the histological findings of increased fat, degeneration, and fibrosis. Specifically, correlated gene sets were enriched for fatty acid metabolism, TGF-B-related, and other pathways. Discussion: This study identifies the timeline of transcriptional changes in muscle after RC repair, which by itself, does not induce a growth/regenerative response as desired. Instead, it is predominately related to metabolism/energetics changes at 1 week post-repair, unclear or asynchronous transcriptional diversity at 2 weeks post-repair, increased adipogenesis at 4 weeks post-repair, and a low transcriptional steady state or a dysregulated stress response at 8 weeks post-repair.

12.
Eur Spine J ; 32(4): 1123-1131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740606

RESUMO

PURPOSE: The purpose of this study was to understand potential baseline transcriptional expression differences in paraspinal skeletal muscle from patients with different underlying lumbar pathologies by comparing multifidus gene expression profiles across individuals with either disc herniation, facet arthropathy, or degenerative spondylolisthesis. METHODS: Multifidus biopsies were obtained from patients (n = 44) undergoing lumbar surgery for either disc herniation, facet arthropathy, or degenerative spondylolisthesis. Diagnostic categories were based on magnetic resonance images, radiology reports, and intraoperative reports. Gene expression for 42 genes was analysed using qPCR. A one-way analysis of variance was performed for each gene to determine differences in expression across diagnostic groups. Corrections for multiple comparisons across genes (Benjamini-Hochberg) and for between-group post hoc comparisons (Sidak) were applied. RESULTS: Adipogenic gene (ADIPOQ) expression was higher in the disc herniation group when compared to the facet arthropathy group (p = 0.032). Adipogenic gene (PPARD) expression was higher in the degenerative spondylolisthesis group when compared to the disc herniation group (p = 0.013), although absolute gene expression levels for all groups was low. Fibrogenic gene (COL3A1) had significantly higher expression in the disc herniation group and facet arthropathy group when compared to the degenerative spondylolisthesis group (p < 0.001 and p = 0.038, respectively). When adjusted for multiple comparisons, only COL3A1 remained significant (p = 0.012). CONCLUSION: Individuals with disc herniation and facet arthropathy demonstrate higher COL3A1 gene expression compared to those with degenerative spondylolisthesis. Future research is required to further understand the biological relevance of these transcriptional differences.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Artropatias , Espondilolistese , Humanos , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/cirurgia , Espondilolistese/diagnóstico por imagem , Espondilolistese/genética , Espondilolistese/cirurgia , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética/efeitos adversos , Expressão Gênica
13.
Biomater Adv ; 142: 213171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36341746

RESUMO

Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 µm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.


Assuntos
Elastômeros , Doenças Musculares , Humanos , Elastômeros/farmacologia , Engenharia Tecidual , Impressão Tridimensional , Doenças Musculares/patologia , Músculo Esquelético , Regeneração
15.
J Orthop Surg Res ; 17(1): 440, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195913

RESUMO

BACKGROUND: Conditions affecting skeletal muscle, such as chronic rotator cuff tears, low back pain, dystrophies, and many others, often share changes in muscle phenotype: intramuscular adipose and fibrotic tissue increase while contractile tissue is lost. The underlying changes in cell populations and cell ratios observed with these phenotypic changes complicate the interpretation of tissue-level transcriptional data. Novel single-cell transcriptomics has limited capacity to address this problem because muscle fibers are too long to be engulfed in single-cell droplets and single nuclei transcriptomics are complicated by muscle fibers' multinucleation. Therefore, the goal of this project was to evaluate the potential and challenges of a spatial transcriptomics technology to add dimensionality to transcriptional data in an attempt to better understand regional cellular activity in heterogeneous skeletal muscle tissue. METHODS: The 3' Visium spatial transcriptomics technology was applied to muscle tissue of a rabbit model of rotator cuff tear. Healthy control and tissue collected at 2 and 16 weeks after tenotomy was utilized and freshly snap frozen tissue was compared with tissue stored for over 6 years to evaluate whether this technology is retrospectively useful in previously acquired tissues. Transcriptional information was overlayed with standard hematoxylin and eosin (H&E) stains of the exact same histological sections. RESULTS: Sequencing saturation and number of genes detected was not affected by sample storage duration. Unbiased clustering matched the underlying tissue type-based on H&E assessment. Connective-tissue-rich areas presented with lower unique molecular identifier counts are compared with muscle fibers even though tissue permeabilization was standardized across the section. A qualitative analysis of resulting datasets revealed heterogeneous fiber degeneration-regeneration after tenotomy based on (neonatal) myosin heavy chain 8 detection and associated differentially expressed gene analysis. CONCLUSIONS: This protocol can be used in skeletal muscle to explore spatial transcriptional patterns and confidently relate them to the underlying histology, even for tissues that have been stored for up to 6 years. Using this protocol, there is potential for novel transcriptional pathway discovery in longitudinal studies since the transcriptional information is unbiased by muscle composition and cell type changes.


Assuntos
Lesões do Manguito Rotador , Animais , Amarelo de Eosina-(YS)/metabolismo , Hematoxilina/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/metabolismo , Coelhos , Estudos Retrospectivos , Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia , Transcriptoma/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-35959464

RESUMO

Background: Quantification of the magnitude and spatial distribution of muscle blood flow changes following exercise may improve our understanding of the effectiveness of various exercise prescriptions. Intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is a technique that quantifies molecular diffusion and microvascular blood flow, and has recently gained momentum as a method to evaluate a muscle's response to exercise. It has also been shown to predict responses to exercise-based physical therapy in individuals with low back pain. However, no study has evaluated the sensitivity of IVIM-MRI to exercise of varying intensity in humans. Here, we aimed to evaluate IVIM signal changes of the paraspinal muscles in response to moderate and high intensity lumbar extension exercise in healthy individuals. Methods: IVIM data were collected in 11 healthy volunteers before and immediately after a 3-min bout of moderate and high-intensity resisted lumbar extension. IVIM data were analyzed to determine the average perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D) in the bilateral paraspinal muscles. Changes in IVIM parameters were compared between the moderate and high intensity exercise bouts. Results: Exercise increased all IVIM parameters, regardless of intensity (p < 0.003). Moderate intensity exercise resulted in a 11.2, 19.6, and 3.5% increase in f, D* and D, respectively. High intensity exercise led to a similar increase in f (12.2%), but much greater changes in D* (48.6%) and D (7.9%). Conclusion: IVIM parameter increases suggest that both the moderate and high-intensity exercise conditions elicited measurable changes in blood flow (increased f and D*) and extravascular molecular diffusion rates (increased D), and that there was a dose-dependence of exercise intensity on D* and D.

17.
Physiol Rep ; 10(14): e15398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35854646

RESUMO

This study investigated body composition measures in highly trained and untrained individuals using whole-body magnetic resonance imaging (MRI). Additionally, correlations between these measures and skeletal muscle gene expression were performed. Thirty-six individuals were included: endurance-trained males (ME, n = 8) and females (FE, n = 7), strength-trained males (MS, n = 7), and untrained control males (MC, n = 8) and females (FC, n = 6). MRI scans were performed, and resting M. vastus lateralis (VL) biopsies were subjected to RNA sequencing. Liver fat fraction, visceral adipose tissue volume (VAT), total body fat, and total lean tissue were measured from MRI data. Additionally, cross-sectional area (CSA) and fat signal fraction (FSF) were calculated from Mm. pectoralis, M. erector spinae and M. multifidus combined, Mm. quadriceps, and Mm. triceps surae (TS). Liver fat fraction, VAT, and total body fat relative to body weight were lower in ME and FE compared with corresponding controls. MS had a larger CSA across all four muscle groups and lower FSF in all muscles apart from TS compared with MC. ME had a lower FSF across all muscle groups and a larger CSA in all muscles except TS than MC. FE athletes showed a higher CSA in Mm. pectoralis and Mm. quadriceps and a lower CSA in TS than FC with no CSA differences found in the back muscles investigated. Surprisingly, the only difference in FSF between FE and FC was found in Mm. pectoralis. Lastly, correlations between VL gene expression and VL CSA as well as FSF showed that genes positively correlated with CSA revealed an enrichment of the oxidative phosphorylation and thermogenesis pathways, while the genes positively correlated with FSF showed significant enrichment of the spliceosome pathway. Although limited differences were found with training in females, our study suggests that both regular endurance and resistance training are useful in maintaining muscle mass, reducing adipose tissue deposits, and reducing muscle fat content in males.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Composição Corporal , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculos Paraespinais/patologia
18.
J Bone Miner Res ; 37(8): 1537-1544, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690917

RESUMO

Low vertebral bone mass is a major risk factor for vertebral compression fractures. Although sarcopenia has been shown to be associated with low bone mineral density (BMD), it is not known whether trunk musculature is directly associated with lumbar BMD, and whether exercise modifies this association. Using data from the Multi-Ethnic Study of Atherosclerosis (MESA), we sought to determine the association of muscle density and fat fraction of the psoas, paraspinal, and oblique muscle groups with L3 lumbar volumetric BMD, and whether these associations were modified by exercise. We obtained L3 vBMD measurements, and fat and muscle measurements (in Hounsfield units [HU]) from abdominal computed tomography (CT) scans spanning the L2 -L4 intervertebral disc spaces. Muscle density was defined as the mean HU value for a muscle group area. Fat fraction was calculated as the mean HU value for the muscle group fat area/total muscle group area (cm2 ). Exercise data were self-reported (MET-minute/week). We utilized multivariable linear regression to evaluate these associations, stratified by gender, and adjusting for demographics, body mass index (BMI), smoking status, impaired fasting glucose, and corticosteroid and anti-resorptive medication use. Among 1923 MESA participants, mean ± standard deviation (SD) age was 62 ± 10 years, 49% were female, 40% white, 21% black, 26% Hispanic/Latino, and 13% Chinese. In fully adjusted analysis, for every 1-SD higher psoas fat fraction, there was a 3.19-SD lower L3 vBMD in men and 4.3-SD lower L3 vBMD in women (p < 0.001). For every 1-SD higher psoas density, there was a 0.2-SD higher L3 vBMD (p < 0.001) in men and 0.19-SD higher L3 vBMD (p < 0.001) in women. Findings were similar for paraspinal and oblique muscles. Intentional exercise did not modify these associations. In men and women, trunk muscle density was positively associated with higher lumbar BMD, suggesting a local association. Future studies are warranted to determine the temporality of this association. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Aterosclerose , Doenças Ósseas Metabólicas , Fraturas por Compressão , Fraturas da Coluna Vertebral , Idoso , Densidade Óssea/fisiologia , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculos
19.
BMC Musculoskelet Disord ; 23(1): 608, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739523

RESUMO

BACKGROUND: Lumbar spine pathology is a common feature of lower back and/or lower extremity pain and is associated with observable degenerative changes in the lumbar paraspinal muscles that are associated with poor clinical prognosis. Despite the commonly observed phenotype of muscle degeneration in this patient population, its underlying molecular mechanisms are not well understood. The aim of this study was to investigate the relationships between groups of genes within the atrophic, myogenic, fibrogenic, adipogenic, and inflammatory pathways and multifidus muscle health in individuals undergoing surgery for lumbar spine pathology. METHODS: Multifidus muscle biopsies were obtained from patients (n = 59) undergoing surgery for lumbar spine pathology to analyze 42 genes from relevant adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic gene pathways using quantitative polymerase chain reaction. Multifidus muscle morphology was examined preoperatively in these patients at the level and side of biopsy using T2-weighted magnetic resonance imaging to determine whole muscle compartment area, lean muscle area, fat cross-sectional areas, and proportion of fat within the muscle compartment. These measures were used to investigate the relationships between gene expression patterns and muscle size and quality. RESULTS: Relationships between gene expression and imaging revealed significant associations between decreased expression of adipogenic/metabolic gene (PPARD), increased expression of fibrogenic gene (COL3A1), and lower fat fraction on MRI (r = -0.346, p = 0.018, and r = 0.386, p = 0.047 respectively). Decreased expression of myogenic gene (mTOR) was related to greater lean muscle cross-sectional area (r = 0.388, p = 0.045). CONCLUSION: Fibrogenic and adipogenic/metabolic genes were related to pre-operative muscle quality, and myogenic genes were related to pre-operative muscle size. These findings provide insight into molecular pathways associated with muscle health in the presence of lumbar spine pathology, establishing a foundation for future research that addresses how these changes impact outcomes in this patient population.


Assuntos
Vértebras Lombares , Músculos Paraespinais , Expressão Gênica , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Vértebras Lombares/cirurgia , Região Lombossacral/patologia , Imageamento por Ressonância Magnética , Atrofia Muscular/complicações , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/genética , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/patologia
20.
Front Physiol ; 13: 801829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350696

RESUMO

The rabbit supraspinatus is a useful translational model for rotator cuff (RC) repair because it recapitulates muscle atrophy and fat accumulation observed in humans after a chronic tear (the "first hit"). However, a timeline of RC tissue response after repair, especially with regard to recent evidence of muscle degeneration and lack of regeneration, is currently unavailable. Thus, the purpose of this study was to characterize the progression of muscle and fat changes over time after the repair of a chronic RC tear in the rabbit model. Two rounds of experiments were conducted in 2017-2018 and 2019-2020 with N = 18 and 16 skeletally mature New Zealand White rabbits, respectively. Animals underwent left supraspinatus tenotomy with repair 8 weeks later. The unoperated right shoulder served as control. The rabbits were sacrificed at 1-, 2-, 4-, and 8-weeks post-repair for histological and biochemical analysis. Atrophy, measured by fiber cross-sectional area and muscle mass, was greatest around 2 weeks after repair. Active muscle degeneration peaked at the same time, involving 8% of slide areas. There was no significant regeneration at any timepoint. Fat accumulation and fibrosis were significantly increased across all time points compared to contralateral. Statement of Clinical Significance: These results demonstrate model reproducibility and a "second hit" phenomenon of repair-induced muscle atrophy and degeneration which partially recovers after a short time, while increased fat and fibrosis persist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...