Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241596

RESUMO

Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.


Assuntos
Cerebelo , Células de Purkinje , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Neurônios/fisiologia , Córtex Cerebelar , Núcleos Cerebelares/fisiologia , Potenciais de Ação/fisiologia
2.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292884

RESUMO

Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons convey signals from the cerebellar cortex to the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many uniform sized PC inputs are thought to converge onto each CbN neuron to suppress or eliminate firing. Leading theories maintain that PCs encode information using either a rate code, or by synchrony and precise timing. Individual PCs are thought to have limited influence on CbN neuron firing. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modelling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, PC-CbN synapses are suited to concurrently convey rate codes, and generate precisely-timed responses in CbN neurons. Variable input sizes also elevate the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. Although this reduces the relative influence of PC synchrony on the firing rate of CbN neurons, synchrony can still have important consequences, because synchronizing even two large inputs can significantly increase CbN neuron firing. These findings may be generalized to other brain regions with highly variable sized synapses.

3.
Phys Rev Lett ; 129(4): 048103, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939004

RESUMO

We investigate the emergence of complex dynamics in networks with heavy-tailed connectivity by developing a non-Hermitian random matrix theory. We uncover the existence of an extended critical regime of spatially multifractal fluctuations between the quiescent and active phases. This multifractal critical phase combines features of localization and delocalization and differs from the edge of chaos in classical networks by the appearance of universal hallmarks of Anderson criticality over an extended region in phase space. We show that the rich nonlinear response properties of the extended critical regime can account for a variety of neural dynamics such as the diversity of timescales, providing a computational advantage for persistent classification in a reservoir setting.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...