Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Structure ; 31(8): 958-967.e3, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279757

RESUMO

B and T lymphocyte attenuator (BTLA) is an attractive target for a new class of therapeutics that attempt to rebalance the immune system by agonizing checkpoint inhibitory receptors (CIRs). Herpesvirus entry mediator (HVEM) binds BTLA in both trans- and cis-orientations. We report here the development and structural characterization of three humanized BTLA agonist antibodies, 22B3, 25F7, and 23C8. We determined the crystal structures of the antibody-BTLA complexes, showing that these antibodies bind distinct and non-overlapping epitopes of BTLA. While all three antibodies activate BTLA, 22B3 mimics HVEM binding to BTLA and shows the strongest agonistic activity in functional cell assays and in an imiquimod-induced mouse model of psoriasis. 22B3 is also capable of modulating HVEM signaling through the BTLA-HVEM cis-interaction. The data obtained from crystal structures, biochemical assays, and functional studies provide a mechanistic model of HVEM and BTLA organization on the cell surface and informed the discovery of a highly active BTLA agonist.


Assuntos
Receptores Imunológicos , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Receptores Imunológicos/metabolismo , Anticorpos/metabolismo
2.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35604387

RESUMO

Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin ß receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.


Assuntos
COVID-19 , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Inflamação , Transdução de Sinais , Linfócitos T
3.
Cell Rep ; 38(12): 110553, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320716

RESUMO

The Btla inhibitory receptor limits innate and adaptive immune responses, both preventing the development of autoimmune disease and restraining anti-viral and anti-tumor responses. It remains unclear how the functions of Btla in diverse lymphocytes contribute to immunoregulation. Here, we show that Btla inhibits activation of genes regulating metabolism and cytokine signaling, including Il6 and Hif1a, indicating a regulatory role in humoral immunity. Within mucosal Peyer's patches, we find T-cell-expressed Btla-regulated Tfh cells, while Btla in T or B cells regulates GC B cell numbers. Treg-expressed Btla is required for cell-intrinsic Treg homeostasis that subsequently controls GC B cells. Loss of Btla in lymphocytes results in increased IgA bound to intestinal bacteria, correlating with altered microbial homeostasis and elevations in commensal and pathogenic bacteria. Together our studies provide important insights into how Btla functions as a checkpoint in diverse conventional and regulatory lymphocyte subsets to influence systemic immune responses.


Assuntos
Imunidade Humoral , Linfócitos T Reguladores , Linfócitos B , Mucosa Intestinal , Transdução de Sinais
5.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871182

RESUMO

BACKGROUNDSevere coronavirus disease 2019 (COVID-19) is associated with a dysregulated immune response, which can result in cytokine-release syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19-associated ARDS have elevated free serum levels of the cytokine lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells (LIGHT; also known as TNFSF14). Such patients may benefit from LIGHT-neutralization therapy.METHODSThis randomized, double-blind, multicenter, proof-of-concept trial enrolled adults hospitalized with COVID-19-associated pneumonia and mild to moderate ARDS. Patients received standard of care plus a single dose of a human LIGHT-neutralizing antibody (CERC-002) or placebo. The primary endpoint was the proportion of patients receiving CERC-002 who remained alive and free of respiratory failure through day 28. Safety was assessed via adverse event monitoring.RESULTSFor most of the 83 enrolled patients, standard of care included systemic corticosteroids (88.0%) or remdesivir (57.8%). A higher proportion of patients remained alive and free of respiratory failure through day 28 after receiving CERC-002 (83.9%) versus placebo (64.5%; P = 0.044), including in patients 60 years of age or older (76.5% vs. 47.1%, respectively; P = 0.042). Mortality rates were 7.7% (CERC-002) and 14.3% (placebo) on day 28 and 10.8% and 22.5%, respectively, on day 60. Treatment-emergent adverse events were less frequent with CERC-002 than placebo.CONCLUSIONFor patients with COVID-19-associated ARDS, adding CERC-002 to standard-of-care treatment reduces LIGHT levels and might reduce the risk of respiratory failure and death.TRIAL REGISTRATIONClinicalTrials.gov NCT04412057.FUNDINGAvalo Therapeutics.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/antagonistas & inibidores , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Corticosteroides/administração & dosagem , Adulto , Alanina/administração & dosagem , Alanina/análogos & derivados , COVID-19/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/mortalidade , Intervalo Livre de Doença , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Taxa de Sobrevida , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue
6.
Cancer Res Commun ; 2(12): 1641-1656, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36704666

RESUMO

High endothelial venules (HEV) are specialized post capillary venules that recruit naïve T cells and B cells into secondary lymphoid organs (SLO) such as lymph nodes (LN). Expansion of HEV networks in SLOs occurs following immune activation to support development of an effective immune response. In this study, we used a carcinogen-induced model of fibrosarcoma to examine HEV remodeling after depletion of regulatory T cells (Treg). We used light sheet fluorescence microscopy imaging to visualize entire HEV networks, subsequently applying computational tools to enable topological mapping and extraction of numerical descriptors of the networks. While these analyses revealed profound cancer- and immune-driven alterations to HEV networks within LNs, these changes did not identify successful responses to treatment. The presence of HEV networks within tumors did however clearly distinguish responders from nonresponders. Finally, we show that a successful treatment response is dependent on coupling tumor-associated HEV (TA-HEV) development to T-cell activation implying that T-cell activation acts as the trigger for development of TA-HEVs which subsequently serve to amplify the immune response by facilitating extravasation of T cells into the tumor mass.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Vênulas , Imageamento Tridimensional , Linfonodos
7.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528674

RESUMO

Specialized stromal cells occupy and help define B- and T-cell domains, which are crucial for proper functioning of our immune system. Signaling through lymphotoxin and TNF receptors is crucial for the development of different stromal subsets, which are thought to arise from a common precursor. However, mechanisms that control the selective generation of the different stromal phenotypes are not known. Using in vitro cultures of embryonic mouse stromal cells, we show that retinoic acid-mediated signaling is important for the differentiation of precursors towards the Cxcl13pos follicular dendritic cell (FDC) lineage, and also blocks lymphotoxin-mediated Ccl19pos fibroblastic reticular cell lineage differentiation. Accordingly, at the day of birth we observe the presence of Cxcl13posCcl19neg/low and Cxcl13neg/lowCcl19pos cells within neonatal lymph nodes. Furthermore, ablation of retinoic acid receptor signaling in stromal precursors early after birth reduces Cxcl13 expression, and complete blockade of retinoic acid signaling prevents the formation of FDC networks in lymph nodes.


Assuntos
Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/fisiologia , Linfonodos/metabolismo , Linfonodos/fisiologia , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/metabolismo , Células Estromais/fisiologia
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34526403

RESUMO

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Homeostase , Tecido Linfoide/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais , Baço/citologia , Baço/metabolismo
9.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822844

RESUMO

Regnase-1 is an emerging regulator of immune responses with essential roles in the posttranscriptional control of immune cell activation. Regnase-1 is expressed in B cells; however, its B cell-specific functions remain unknown. Here, we demonstrate that Regnase-1 prevents severe autoimmune pathology and show its essential role in maintaining B cell homeostasis. Using Cre driver mice for ablation of Regnase-1 at various stages of B cell development, we demonstrate that loss of Regnase-1 leads to aberrant B cell activation and differentiation, resulting in systemic autoimmunity and early morbidity. The basis of these findings was informed by gene expression data revealing a regulatory role for Regnase-1 in the suppression of a transcriptional program that promotes B cell activation, survival, and differentiation. Overall, our study shows that Regnase-1 exerts critical control of B cell activation, which is required for prevention of immunopathology.


Assuntos
Autoimunidade/genética , Linfócitos B/metabolismo , Homeostase/genética , Ativação Linfocitária/genética , Ribonucleases/genética , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Camundongos Knockout , Camundongos Transgênicos , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ribonucleases/metabolismo
10.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33753412

RESUMO

The lymphotoxin ß receptor (LTßR) plays an essential role in the initiation of immune responses to intracellular pathogens. In mice, the LTßR is crucial for surviving acute toxoplasmosis; however, until now, a functional analysis was largely incomplete. Here, we demonstrate that the LTßR is a key regulator required for the intricate balance of adaptive immune responses. Toxoplasma gondii-infected LTßR-deficient (LTßR-/-) mice show globally altered interferon-γ (IFN-γ) regulation, reduced IFN-γ-controlled host effector molecule expression, impaired T cell functionality, and an absent anti-parasite-specific IgG response, resulting in a severe loss of immune control of the parasites. Reconstitution of LTßR-/- mice with toxoplasma immune serum significantly prolongs survival following T. gondii infection. Notably, analysis of RNA-seq data clearly indicates a specific effect of T. gondii infection on the B cell response and isotype switching. This study uncovers the decisive role of the LTßR in cytokine regulation and adaptive immune responses to control T. gondii.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Receptor beta de Linfotoxina/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Animais , Modelos Animais de Doenças , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Knockout , Toxoplasmose/parasitologia
11.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33724364

RESUMO

The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1ß2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTßR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1ß2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Tecido Linfoide/imunologia , Linfotoxina-alfa/imunologia , Transdução de Sinais/imunologia , Baço/imunologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Feminino , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Baço/citologia , Baço/metabolismo
12.
NPJ Vaccines ; 5(1): 102, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33298958

RESUMO

Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.

13.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207209

RESUMO

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Interleucina/biossíntese , Animais , Biomarcadores , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunofenotipagem , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos , RNA Citoplasmático Pequeno/genética , Receptores de Interleucina/genética , Transdução de Sinais
14.
Sci Immunol ; 5(50)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817296

RESUMO

Herpes simplex virus (HSV) glycoprotein D (gD) not only is required for virus entry and cell-to-cell spread but also binds the host immunomodulatory molecule, HVEM, blocking interactions with its ligands. Natural infection primarily elicits neutralizing antibodies targeting gD, but subunit protein vaccines designed to induce this response have failed clinically. In contrast, preclinical studies demonstrate that an HSV-2 single-cycle strain deleted in gD, ΔgD-2, induces primarily non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC). These studies were designed to test the hypothesis that gD interferes with ADCC through engagement of HVEM. Immunization of Hvem-/- mice with ΔgD-2 resulted in significant reduction in HSV-specific IgG2 antibodies, the subclass associated with FcγR activation and ADCC, compared with wild-type controls. This translated into a parallel reduction in active and passive vaccine protection. A similar decrease in ADCC titers was observed in Hvem-/- mice vaccinated with an alternative HSV vaccine candidate (dl5-29) or an unrelated vesicular stomatitis virus-vectored vaccine. Unexpectedly, not only did passive transfer of immune serum from ΔgD-2-vaccinated Hvem-/- mice fail to protect wild-type mice but transfer of immune serum from ΔgD-2-vaccinated wild-type mice failed to protect Hvem-/- mice. Immune cells isolated from Hvem-/- mice were impaired in FcγR activation, and, conversely, addition of gD protein or anti-HVEM antibodies to in vitro murine or human FcγR activation assays inhibited the response. These findings uncover a previously unrecognized role for HVEM signaling in generating and mediating ADCC and an additional HSV immune evasion strategy.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Herpes Simples/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Simplexvirus/imunologia , Vacinas Virais/administração & dosagem , Animais , Feminino , Herpes Simples/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais
15.
mSphere ; 5(4)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32817460

RESUMO

Many coronavirus disease 2019 (COVID-19) patients demonstrate lethal respiratory complications caused by cytokine release syndrome (CRS). Multiple cytokines have been implicated in CRS, but levels of tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) have not been previously measured in this setting. In this study, we observed significantly elevated serum LIGHT levels in hospitalized COVID-19 patients compared to healthy age- and gender-matched control patients. The assay detected bioavailable LIGHT unbound to the inhibitor Decoy receptor-3 (DcR3). Bioavailable LIGHT levels were elevated in patients both on and off ventilatory support, with a trend toward higher levels in patients requiring mechanical ventilation. In hospitalized patients over the age of 60, who exhibited a mortality rate of 82%, LIGHT levels were significantly higher (P = 0.0209) in those who died than in survivors. As previously reported, interleukin 6 (IL-6) levels were also elevated in these patients, with significantly (P = 0.0076) higher levels observed in patients who died than in survivors, paralleling the LIGHT levels. Although attempts to block IL-6 binding to its receptor have shown limited success in COVID-19 CRS, neutralization of LIGHT may prove to be more effective owing to its more central role in regulating antiviral immune responses. The findings presented here demonstrate that LIGHT is a cytokine which may play an important role in COVID-19 patients presenting with acute respiratory distress syndrome (ARDS) and CRS and suggest that LIGHT neutralization may be beneficial to COVID-19 patients.


Assuntos
Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Pneumonia Viral/imunologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Adulto , Fatores Etários , Idoso , Anticorpos Monoclonais/uso terapêutico , Betacoronavirus , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/complicações , Hospitalização/estatística & dados numéricos , Humanos , Interleucina-6/imunologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Respiração Artificial/estatística & dados numéricos , SARS-CoV-2
16.
Front Immunol ; 11: 1268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676079

RESUMO

Neuronal regulation of diverse physiological functions requires complex molecular interactions in innervated tissues to maintain proper organ function. Here we show that loss of the neuronal cell surface adhesion/recognition molecule Contactin-1 (Cntn1) directly impairs intestinal function causing wasting that subsequently results in global immune defects. Loss of Cntn1 results in hematologic alterations and changes in blood metabolites associated with malnourishment. We found thymus and spleen of Cntn1-deficient animals atrophied with severe reductions in lymphocyte populations. Elevated thymic Gilz expression indicated ongoing glucocorticoid signaling in Cntn1-deficient animals, consistent with the malnourishment phenotype. Intestinal Contactin-1 was localized to neurons in the villi and the submucosal/myenteric plexus that innervates smooth muscle. Loss of Cntn1 was associated with reduced intestinal Bdnf and Adrb2, indicating reduced neuromuscular crosstalk. Additionally, loss of Cntn1 resulted in reduced recruitment of CD3+ T cells to villi within the small intestine. Together, these data illustrate the critical role of Contactin-1 function within the gut, and how this is required for normal systemic immune functions.


Assuntos
Contactina 1/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Animais , Biomarcadores , Contagem de Células Sanguíneas , Análise Química do Sangue , Citometria de Fluxo , Perfilação da Expressão Gênica , Glucocorticoides/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Fenótipo , Transdução de Sinais , Baço/imunologia , Baço/metabolismo , Baço/patologia , Timo/imunologia , Timo/metabolismo , Timo/patologia
17.
J Clin Invest ; 130(8): 4182-4194, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32597832

RESUMO

Although the immune response within draining lymph nodes (DLNs) has been studied for decades, how their stromal compartment contributes to this process remains to be fully explored. Here, we show that donor mast cells were prominent activators of collagen I deposition by fibroblastic reticular cells (FRCs) in DLNs shortly following transplantation. Serial analysis of the DLN indicated that the LN stroma did not return to its baseline microarchitecture following organ rejection and that the DLN contained significant fibrosis following repetitive organ transplants. Using several FRC conditional-knockout mice, we show that induction of senescence in the FRCs of the DLN resulted in massive production of collagen I and a proinflammatory milieu within the DLN. Stimulation of herpes virus entry mediator (HVEM) on FRCs by its ligand LIGHT contributed chiefly to the induction of senescence in FRCs and overproduction of collagen I. Systemic administration of ex vivo-expanded FRCs to mice decreased DLN fibrosis and strengthened the effect of anti-CD40L in prolonging heart allograft survival. These data demonstrate that the transformation of FRCs into proinflammatory myofibroblasts is critically important for the maintenance of a proinflammatory milieu within a fibrotic DLN.


Assuntos
Fibroblastos/metabolismo , Transplante de Coração , Linfonodos/metabolismo , Animais , Fibroblastos/patologia , Fibrose , Linfonodos/patologia , Camundongos , Camundongos Knockout
18.
Nat Neurosci ; 23(7): 842-853, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424282

RESUMO

Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-ß receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.


Assuntos
Neoplasias Cerebelares/imunologia , Meduloblastoma/imunologia , Evasão Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
J Pathol ; 250(4): 440-451, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31990039

RESUMO

Bone loss induced by ovariectomy is due to the direct activity on bone cells and mesenchymal cells and to the dysregulated activity of bone marrow cells, including immune cells and stromal cells, but the underlying mechanisms are not completely known. Here, we demonstrate that ovariectomy induces the T-cell co-stimulatory cytokine LIGHT, which stimulates both osteoblastogenesis and osteoclastogenesis by modulating osteoclastogenic cytokine expression, including TNF, osteoprotegerin, and the receptor activator of nuclear factor-κB ligand (RANKL). Predictably, LIGHT-deficient (Tnfsf14-/- ) mice are protected from ovariectomy-dependent bone loss, whereas trabecular bone mass increases in mice deficient in both LIGHT and T and B lymphocytes (Rag -/- Tnfsf14 -/- ) and is associated with an inversion of the TNF and RANKL/OPG ratio. Furthermore, women with postmenopausal osteoporosis display high levels of LIGHT in circulating T cells and monocytes. Taken together, these results indicate that LIGHT mediates bone loss induced by ovariectomy, suggesting that patients with postmenopausal osteoporosis may benefit from LIGHT antagonism. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Reabsorção Óssea/metabolismo , Estrogênios/deficiência , Osteoblastos/patologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Animais , Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Estrogênios/metabolismo , Humanos , Camundongos , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Ligante RANK/metabolismo , Células Estromais/metabolismo
20.
J Immunol ; 204(5): 1085-1090, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969387

RESUMO

Lymphotoxin ß receptor (LTßR) signaling is crucial for lymphoid tissue organogenesis and immune homeostasis. To identify novel regulatory mechanisms for signaling, we implemented a two-step screen that uses coexpression analysis of human fibroblasts undergoing LTßR stimulation and affinity-purification mass spectrometry for the LTßR signaling protein TNFR-associated factor 3 (TRAF3). We identify Ewing sarcoma (EWS) protein as a novel LTßR signaling component that associates with TRAF3 but not with TNFR-associated factor 2 (TRAF2). The EWS:TRAF3 complex forms under unligated conditions that are disrupted following activation of the LTßR. We conclude that EWS limits expression of proinflammatory molecules, GM-CSF, and ERK-2, promoting immune homeostasis.


Assuntos
Receptor beta de Linfotoxina/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Complexos Multiproteicos/imunologia , Proteína EWS de Ligação a RNA/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Células HEK293 , Humanos , Receptor beta de Linfotoxina/genética , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Complexos Multiproteicos/genética , Proteína EWS de Ligação a RNA/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...