Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 385(6704): 91-99, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963839

RESUMO

Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in ß-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Antidrepanocíticos/química , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Cristalografia por Raios X , Descoberta de Drogas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Macaca fascicularis , Proteínas do Tecido Nervoso/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
Biochem Pharmacol ; 209: 115418, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693437

RESUMO

Myeloperoxidase (MPO) is a heme-containing peroxidase from phagocytic cells, which plays an important role in the innate immune response. The primary anti-microbial function of MPO is achieved by catalyzing the oxidation of halides by hydrogen peroxide (H2O2). Upon activation of phagocytes, MPO activity is detectable in both phagosomes and extracellularly, where it can remain or transcytose into interstitial compartments. Activated MPO leads to oxidative stress and tissue damage in many inflammatory states, including cardiovascular disease. Starting from a low molecular weight (LMW) high throughput screening (HTS) hit, here we report the discovery of a novel pyrrolidinone indole (IN-4) as a highly potent MPO inhibitor. This compound displays similar in vitro potency across peroxidation, plasma and NETosis assays. In a dilution/dialysis study, <5% of the original MPO activity was detected post-incubation of MPO with IN-4, suggesting irreversible enzyme inhibition. A fast MPO inactivation rate (kinact/Ki) and low partition ratio (k3/k4) make IN-4 kinetic properties attractive for an MPO inhibitor. This compound also displays significant selectivity over the closely related thyroid peroxidase (TPO), and is selective for extracellular MPO over intracellular (neutrophil) MPO. Moreover, IN-4 shows good exposure, low clearance and high oral bioavailability in mice, rats and dogs. The high in vitro MPO activity and high oral exposure observed with IN-4 result in a dose-dependent inhibition of MPO activity in three mouse models of inflammation. In conclusion, IN-4 is a novel, potent, mechanism-based and selective MPO inhibitor, which may be used as superior therapeutic agent to treat multiple inflammatory conditions, including cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Peroxidase , Ratos , Camundongos , Animais , Cães , Peróxido de Hidrogênio , Antioxidantes , Indóis , Pirrolidinonas
3.
ACS Med Chem Lett ; 11(5): 984-990, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435415

RESUMO

The scope of the acid-mediated 3-component synthesis of thiadiazines was investigated. A selective functionalization of the six-membered heterocyclic core structure was accomplished by sequential alkylations, saponifications, and coupling reactions. Several new analogs of a dihydropyrimidinone Hsp70 chaperone agonist, MAL1-271, showed promising activity in a cell based model of Huntington's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...