Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546716

RESUMO

DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes. How TFs locate their DNA targets and how multiple TFs cooperate to regulate individual genes is still unclear. Most yeast TFs are thought to regulate transcription via binding to upstream activating sequences, situated within a few hundred base pairs upstream of the regulated gene. While this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way with the large set of yeast TFs. Here, we have integrated information on the binding and expression targets for the near-complete set of yeast TFs. While we found many instances of functional TF binding sites in upstream regulatory regions, we found many more instances that do not fit this model. In many cases, rapid TF depletion affects gene expression where there is no detectable binding of that TF to the upstream region of the affected gene. In addition, for most TFs, only a small fraction of bound TFs regulates the nearby gene, showing that TF binding does not automatically correspond to regulation of the linked gene. Finally, we found that only a small percentage of TFs are exclusively strong activators or repressors with most TFs having dual function. Overall, our comprehensive mapping of TF binding and regulatory targets have both confirmed known TF relationships and revealed surprising properties of TF function.

2.
Mol Cell ; 82(21): 4033-4048.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208626

RESUMO

Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 12(1): 2220, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850123

RESUMO

The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a "fuzzy" protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein-protein interaction.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Complexo Mediador/química , Complexo Mediador/genética , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
Mol Cell ; 78(5): 890-902.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32416068

RESUMO

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy" interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Fatores de Transcrição/genética , Ativação Transcricional/genética , Sequência de Aminoácidos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/metabolismo , Aprendizado Profundo , Ligação Proteica , Domínios Proteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
6.
Elife ; 92020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913117

RESUMO

Deletions within genes coding for subunits of the transcription coactivator SAGA caused strong genome-wide defects in transcription and SAGA-mediated chromatin modifications. In contrast, rapid SAGA depletion produced only modest transcription defects at 13% of protein-coding genes - genes that are generally more sensitive to rapid TFIID depletion. However, transcription of these 'coactivator-redundant' genes is strongly affected by rapid depletion of both factors, showing the overlapping functions of TFIID and SAGA at this gene set. We suggest that this overlapping function is linked to TBP-DNA recruitment. The remaining 87% of expressed genes that we term 'TFIID-dependent' are highly sensitive to rapid TFIID depletion and insensitive to rapid SAGA depletion. Genome-wide mapping of SAGA and TFIID found binding of both factors at many genes independent of gene class. Promoter analysis suggests that the distinction between the gene classes is due to multiple components rather than any single regulatory factor or promoter sequence motif.


Assuntos
Genes Fúngicos/genética , Família Multigênica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Transcrição Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo
7.
Cell Rep ; 22(12): 3251-3264, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562181

RESUMO

Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Complexo Mediador/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional
8.
Mol Cell Biol ; 38(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507182

RESUMO

Eukaryotic transcription activation domains (ADs) are intrinsically disordered polypeptides that typically interact with coactivator complexes, leading to stimulation of transcription initiation, elongation, and chromatin modifications. Here we examined the properties of two strong and conserved yeast ADs: Met4 and Ino2. Both factors have tandem ADs that were identified by conserved sequence and functional studies. While the AD function of both factors depended on hydrophobic residues, Ino2 further required key conserved acidic and polar residues for optimal function. Binding studies showed that the ADs bound multiple Med15 activator-binding domains (ABDs) with similar orders of micromolar affinity and similar but distinct thermodynamic properties. Protein cross-linking data show that no unique complex was formed upon Met4-Med15 binding. Rather, we observed heterogeneous AD-ABD contacts with nearly every possible AD-ABD combination. Many of these properties are similar to those observed with yeast activator Gcn4, which forms a large heterogeneous, dynamic, and fuzzy complex with Med15. We suggest that this molecular behavior is common among eukaryotic activators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sequência Conservada , Complexo Mediador/genética , Complexo Mediador/metabolismo , Ligação Proteica , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Transcrição Gênica , Ativação Transcricional
9.
Mol Cell ; 68(1): 118-129.e5, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28918900

RESUMO

Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We re-examined the role of TFIID by rapid depletion of S. cerevisiae TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Taf1, Taf2, Taf7, Taf11, and Taf13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing, and TATA-less gene classes. The magnitude of TFIID dependence varies with growth conditions, although this variation is similar genome-wide. Many studies have suggested differences in gene-regulatory mechanisms between TATA and TATA-less genes, and these differences have been attributed in part to differential dependence on SAGA or TFIID. Our work indicates that TFIID participates in expression of nearly all yeast mRNAs and that differences in regulation between these two gene categories is due to other properties.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Transativadores/química , Transcrição Gênica , Deleção de Genes , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fator de Transcrição TFIID/deficiência , Fator de Transcrição TFIID/genética
10.
Mol Cell Biol ; 36(19): 2464-75, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381459

RESUMO

TFIIH is a 10-subunit RNA polymerase II basal transcription factor with a dual role in DNA repair. TFIIH contains three enzymatic functions and over 30 conserved subdomains and topological regions. We systematically tested the function of these regions in three TFIIH core module subunits, i.e., Ssl1, Tfb4, and Tfb2, in the DNA translocase subunit Ssl2, and in the kinase module subunit Tfb3. Our results are consistent with previously predicted roles for the Tfb2 Hub, Ssl2 Lock, and Tfb3 Latch regions, with mutations in these elements typically having severe defects in TFIIH subunit association. We also found unexpected roles for other domains whose function had not previously been defined. First, the Ssl1-Tfb4 Ring domains are important for TFIIH assembly. Second, the Tfb2 Hub and HEAT domains have an unexpected role in association with Tfb3. Third, the Tfb3 Ring domain is important for association with many other TFIIH subunits. Fourth, a partial deletion of the Ssl1 N-terminal extension (NTE) domain inhibits TFIIH function without affecting subunit association. Finally, we used site-specific cross-linking to localize the Tfb3-binding surface on the Rad3 Arch domain. Our cross-linking results suggest that Tfb3 and Rad3 have an unusual interface, with Tfb3 binding on two opposite faces of the Arch.


Assuntos
Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Mutação , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(34): E3506-13, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122681

RESUMO

Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/química , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Complexo Mediador/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional
12.
Mol Cell Biol ; 34(15): 2929-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24865972

RESUMO

Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription.


Assuntos
DNA/genética , Mutação/genética , TATA Box/genética , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica/genética , Leveduras/genética , Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas/genética , Proteínas Ribossômicas/genética , Fator de Transcrição TFIID/genética
13.
Nat Struct Mol Biol ; 19(8): 788-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751016

RESUMO

Yeast RNA polymerase II (Pol II) general transcription factor TFIIE and the TFIIH subunit Ssl2 (yeast ortholog of mammalian XPB) function in the transition of the preinitiation complex (PIC) to the open complex. We show that the three TFIIE winged-helix (WH) domains form a heterodimer, with the Tfa1 (TFIIEα) WH binding the Pol II clamp and the Tfa2 (TFIIEß) tandem WH domain encircling promoter DNA that becomes single-stranded in the open complex. Ssl2 lies adjacent to TFIIE, enclosing downstream promoter DNA. Unlike previous proposals, comparison of the PIC and open-complex models strongly suggests that Ssl2 promotes DNA opening by functioning as a double-stranded-DNA translocase, feeding 15 base pairs into the Pol II cleft. Right-handed threading of DNA through the Ssl2 binding groove, combined with the fixed position of upstream promoter DNA, leads to DNA unwinding and the open state.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dimerização , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/genética
14.
Mol Cell ; 44(6): 942-53, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195967

RESUMO

The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Sítios de Ligação/genética , Complexo Mediador/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
15.
Mol Cell Biol ; 30(10): 2376-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308326

RESUMO

Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Fúngica da Expressão Gênica , Complexo Mediador/química , Complexo Mediador/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
16.
EMBO J ; 29(4): 706-16, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20033062

RESUMO

The RNA polymerase (pol) II general transcription factor TFIIF functions at several steps in transcription initiation including preinitiation complex (PIC) formation and start site selection. We find that two structured TFIIF domains bind Pol II at separate locations far from the active site with the TFIIF dimerization domain on the Pol II lobe and the winged helix domain of the TFIIF small subunit Tfg2 above the Pol II protrusion where it may interact with upstream promoter DNA. Binding of the winged helix to the protrusion is PIC specific. Anchoring of these two structured TFIIF domains at separate sites locates an essential and unstructured region of Tfg2 near the Pol II active site cleft where it may interact with flexible regions of Pol II and the general factor TFIIB to promote initiation and start site selection. Consistent with this mechanism, mutations far from the enzyme active site, which alter the binding of either structured TFIIF domains to Pol II, have similar defects in transcription start site usage.


Assuntos
RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição TFII/química , Sequência de Bases , Sítios de Ligação , Primers do DNA/genética , Modelos Moleculares , Complexos Multiproteicos/química , Mutação , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
17.
Mol Cell Biol ; 29(17): 4852-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581288

RESUMO

The Saccharomyces cerevisiae kinase Bur1 is involved in coupling transcription elongation to chromatin modification, but not all important Bur1 targets in the elongation complex are known. Using a chemical genetics strategy wherein Bur1 kinase was engineered to be regulated by a specific inhibitor, we found that Bur1 phosphorylates the Spt5 C-terminal repeat domain (CTD) both in vivo and in isolated elongation complexes in vitro. Deletion of the Spt5 CTD or mutation of the Spt5 serines targeted by Bur1 reduces recruitment of the PAF complex, which functions to recruit factors involved in chromatin modification and mRNA maturation to elongating polymerase II (Pol II). Deletion of the Spt5 CTD showed the same defect in PAF recruitment as rapid inhibition of Bur1 kinase activity, and this Spt5 mutation led to a decrease in histone H3K4 trimethylation. Brief inhibition of Bur1 kinase activity in vivo also led to a significant decrease in phosphorylation of the Pol II CTD at Ser-2, showing that Bur1 also contributes to Pol II Ser-2 phosphorylation. Genetic results suggest that Bur1 is essential for growth because it targets multiple factors that play distinct roles in transcription.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Quinases Ciclina-Dependentes/genética , Humanos , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
18.
Nat Struct Mol Biol ; 14(8): 696-703, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632521

RESUMO

We incorporated the non-natural photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa) into the RNA polymerase II (Pol II) surface surrounding the central cleft formed by the Rpb1 and Rpb2 subunits. Photo-cross-linking of preinitiation complexes (PICs) with these Pol II derivatives and hydroxyl-radical cleavage assays revealed that the TFIIF dimerization domain interacts with the Rpb2 lobe and protrusion domains adjacent to Rpb9, while TFIIE cross-links to the Rpb1 clamp domain on the opposite side of the Pol II central cleft. Mutations in the Rpb2 lobe and protrusion domains alter both Pol II-TFIIF binding and the transcription start site, a phenotype associated with mutations in TFIIF, Rpb9 and TFIIB. Together with previous biochemical and structural studies, these findings illuminate the structural organization of the PIC and the network of protein-protein interactions involved in transcription start site selection.


Assuntos
Modelos Moleculares , RNA Polimerase II/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFII/química , Sítio de Iniciação de Transcrição , Aminoácidos/química , Sítios de Ligação , Simulação por Computador , Dimerização , Mutação , Mapeamento de Peptídeos , Estrutura Terciária de Proteína , Especificidade por Substrato
19.
Genes Dev ; 18(9): 1022-34, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15132995

RESUMO

A surface that is required for rapid formation of preinitiation complexes (PICs) was identified on the N-terminal domain (NTD) of the RNA Pol II general transcription factor TFIIA. Site-specific photocross-linkers and tethered protein cleavage reagents positioned on the NTD of TFIIA and assembled in PICs identified the SAGA subunit Spt8 and the TFIID subunit Taf4 as located near this surface. In agreement with these findings, mutations in Spt8 and the TFIIA NTD interact genetically. Using purified proteins, it was found that TFIIA and Spt8 do not stably bind to each other, but rather both compete for binding to TBP. Consistent with this competition, Spt8 inhibits the binding of SAGA to PICs in the absence of activator. In the presence of activator, Spt8 enhances transcription in vitro, and the positive function of the TFIIA NTD is largely mediated through Spt8. Our results suggest a mechanism for the previously observed positive and negative effects of Spt8 on transcription observed in vivo.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Reagentes de Ligações Cruzadas , Radical Hidroxila/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...