Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018123

RESUMO

Mitochondria are cellular powerhouses and are crucial for cell function. However, they are vulnerable to internal and external perturbagens that may impair mitochondrial function and eventually lead to cell death. In particular, small molecules may impact mitochondrial function, and therefore, their influence on mitochondrial homeostasis is at best assessed early on in the characterization of biologically active small molecules and drug discovery. We demonstrate that unbiased morphological profiling by means of the cell painting assay (CPA) can detect mitochondrial stress coupled with the induction of an integrated stress response. This activity is common for compounds addressing different targets, is not shared by direct inhibitors of the electron transport chain, and enables prediction of mitochondrial stress induction for small molecules that are profiled using CPA.

2.
J Med Chem ; 67(11): 8862-8876, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687818

RESUMO

Screening for small-molecule modulators of disease-relevant targets and phenotypes is the first step on the way to new drugs. Large compound libraries have been synthesized by academia and, particularly, pharmaceutical companies to meet the need for novel chemical entities that are as diverse as possible. Screening of these compound libraries revealed a portion of small molecules that is inactive in more than 100 different assays and was therefore termed "dark chemical matter" (DCM). Deorphanization of DCM promises to yield very selective compounds as they are expected to have less off-target effects. We employed morphological profiling using the Cell Painting assay to detect bioactive DCM. Within the DCM collection, we identified bioactive compounds and confirmed several modulators of microtubules, DNA synthesis, and pyrimidine biosynthesis. Profiling approaches are, therefore, powerful tools to probe compound collections for bioactivity in an unbiased manner and are particularly suitable for deorphanization of DCM.


Assuntos
Bibliotecas de Moléculas Pequenas , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , DNA/química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...