Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 31(2): 241-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26330562

RESUMO

BACKGROUND: Renal imaging examinations provide high-resolution information about the anatomic structure of the kidneys and are used to measure total kidney volume (TKV) in autosomal dominant polycystic kidney disease (ADPKD) patients. TKV has become the gold-standard image biomarker for ADPKD progression at early stages of the disease and is used in clinical trials to characterize treatment efficacy. Automated methods to segment the kidneys and measure TKV are desirable because of the long time requirement for manual approaches such as stereology or planimetry tracings. However, ADPKD kidney segmentation is complicated by a number of factors, including irregular kidney shapes and variable tissue signal at the kidney borders. METHODS: We describe an image processing approach that overcomes these problems by using a baseline segmentation initialization to provide automatic segmentation of follow-up scans obtained years apart. We validated our approach using 20 patients with complete baseline and follow-up T1-weighted magnetic resonance images. Both manual tracing and stereology were used to calculate TKV, with two observers performing manual tracings and one observer performing repeat tracings. Linear correlation and Bland-Altman analysis were performed to compare the different approaches. RESULTS: Our automated approach measured TKV at a level of accuracy (mean difference ± standard error = 0.99 ± 0.79%) on par with both intraobserver (0.77 ± 0.46%) and interobserver variability (1.34 ± 0.70%) of manual tracings. All approaches had excellent agreement and compared favorably with ground-truth manual tracing with interobserver, stereological and automated approaches having 95% confidence intervals ∼ ± 100 mL. CONCLUSIONS: Our method enables fast, cost-effective and reproducible quantification of ADPKD progression that will facilitate and lower the costs of clinical trials in ADPKD and other disorders requiring accurate, longitudinal kidney quantification. In addition, it will hasten the routine use of TKV as a prognostic biomarker in ADPKD.


Assuntos
Rim/patologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Rim Policístico Autossômico Dominante/diagnóstico , Adulto , Progressão da Doença , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Prognóstico , Curva ROC
2.
Magn Reson Med ; 75(4): 1466-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25974140

RESUMO

PURPOSE: Noninvasive imaging techniques that quantify renal tissue composition are needed to more accurately ascertain prognosis and monitor disease progression in polycystic kidney disease (PKD). Given the success of magnetization transfer (MT) imaging to characterize various tissue remodeling pathologies, it was tested on a murine model of autosomal dominant PKD. METHODS: C57Bl/6 Pkd1 R3277C mice at 9, 12, and 15 months were imaged with a 16.4T MR imaging system. Images were acquired without and with RF saturation in order to calculate MT ratio (MTR) maps. Following imaging, the mice were euthanized and kidney sections were analyzed for cystic and fibrotic indices, which were compared with statistical parameters of the MTR maps. RESULTS: The MTR-derived mean, median, 25th percentile, skewness, and kurtosis were all closely related to indices of renal pathology, including kidney weight/body weight, cystic index, and percent of remaining parenchyma. The correlation between MTR and histology-derived cystic and fibrotic changes was R(2) = 0.84 and R(2) = 0.70, respectively. CONCLUSION: MT imaging provides a new, noninvasive means of measuring tissue remodeling PKD changes and may be better suited for characterizing renal impairment compared with conventional MR techniques.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cancer Imaging ; 15: 12, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26268363

RESUMO

BACKGROUND: Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-defined tumor boundaries, and limited number of image types. To overcome these challenges we propose a semi-automated segmentation method that relies only on T2-weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. METHODS: First, the user draws a region-of-interest (ROI) that completely encloses the tumor and some normal tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W images. Third, the posterior probability of each pixel/voxel belonging to normal and abnormal tissues is calculated based on information derived from the atlas and ROI. Finally, geodesic active contours use the probability map of the tumor to shrink the ROI until optimal tumor boundaries are found. This method was validated against the true segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was obtained from manual segmentations of three experts using the Simultaneous Truth and Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other descriptive statistics were computed for the proposed method, as well as the experts' segmentation versus the TS. We also tested the method with the BraTS datasets, which supply expert segmentations. RESULTS AND DISCUSSION: For 2D segmentation vs. TS, the mean Dice index was 0.90 ± 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D segmentation vs. TS, the mean Dice index was 0.89 ± 0.06, sensitivity was 0.91, and specificity was 0.99. The automated results are comparable with the experts' manual segmentation results. CONCLUSIONS: We present an accurate, robust, efficient, and reproducible segmentation method for pre-operative LGGs.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade
4.
PeerJ ; 2: e453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024921

RESUMO

scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

5.
J Digit Imaging ; 27(4): 514-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24639063

RESUMO

Stereology is a volume estimation method, typically applied to diagnostic imaging examinations in population studies where planimetry is too time-consuming (Chapman et al. Kidney Int 64:1035-1045, 2003), to obtain quantitative measurements (Nyengaard J Am Soc Nephrol 10:1100-1123, 1999, Michel and Cruz-Orive J Microsc 150:117-136, 1988) of certain structures or organs. However, true segmentation is required in order to perform advanced analysis of the tissues. This paper describes a novel method for segmentation of region(s) of interest using stereology data as prior information. The result is an efficient segmentation method for structures that cannot be easily segmented using other methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Doenças Renais Policísticas/patologia , Algoritmos , Humanos , Rim/patologia , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...