Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38767990

RESUMO

PURPOSE: The aim of this study was to compare the physiological adaptations of males and females to repeated sprint training in hypoxia. METHODS: Active males and females completed 7 weeks of repeated sprint training in normoxia (RSN, FiO2 = 0.209, males: n = 11, females: n = 8) or hypoxia (RSH, FiO2 = 0.146, males: n = 12, females: n = 10). Before (Pre-) and after (Post-) training, a repeated sprint ability test (RSA) was performed (10 s cycle sprints with 20 s recovery between sprints, until exhaustion), and aerobic and anaerobic qualities were evaluated in normoxia. RESULTS: The number of sprints during RSA increased after training in HYP from 11 to 21 in males and from 8 to 14 in females (p < 0.001, CI = [5, 11]), without significant changes after RSN (10 vs 14 and 8 vs 10 in males and females, respectively). No improvements in mean or peak power output were found in either group. Total work during RSA improved after training in all groups (+9 ± 2 kJ, p < 0.001). Tissue saturation index (TSI) during the repeated sprints was higher in females than males (+10 ± 2 %, p < 0.001). The difference in TSI between the recovery and sprint phases remained unchanged after training. VO2peak during an incremental exercise test increased in all groups (+3 ± 1 ml·kg-1·min-1, p = 0.039). Mean power output during a Wingate test also increased in both males and females in RSN and RSH (+0.38 ± 0.18 W·kg-1, p = 0.036). No changes were observed in hematological parameters after training. CONCLUSIONS: Seven weeks of RSH further increased the number of repeated sprints performed to exhaustion compared to RSN in females, in the same order of magnitude as in males.

2.
Med Sci Sports Exerc ; 55(1): 46-54, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069865

RESUMO

PURPOSE: This study aimed to investigate the modulation of circulating exosome-like extracellular vesicles (ELVs) after 6 wk of sprint interval training (SIT) at sea level and at 2000, 3000, and 4000 m. METHODS: Thirty trained endurance male athletes (18-35 yr) participated in a 6-wk SIT program (30-s all-out sprint, 4-min 30-s recovery; 4-9 repetitions, 2 sessions per week) at sea level ( n = 8), 2000 m (fraction of inspired oxygen (F io2 ) 0.167, n = 8), 3000 m (F io2 0.145, n = 7), or 4000 m (F io2 0.13, n = 7). Venous blood samples were taken before and after the training period. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis, and characterized according to international standards. Candidate ELV microRNAs (miRNAs) were quantified by real-time polymerase chain reaction. RESULTS: When the three hypoxic groups were analyzed separately, only very minor differences could be detected in the levels of circulating particles, ELV markers, or miRNA. However, the levels of circulating particles increased (+262%) after training when the three hypoxic groups were pooled, and tended to increase at sea level (+65%), with no difference between these two groups. A trend to an increase was observed for the two ELV markers, TSG101 (+65%) and HSP60 (+441%), at sea level, but not in hypoxia. Training also seemed to decrease the abundance of miR-23a-3p and to increase the abundance of miR-21-5p in hypoxia but not at sea level. CONCLUSIONS: A 6-wk SIT program tended to increase the basal levels of circulating ELVs when performed at sea level but not in hypoxia. In contrast, ELV miRNA cargo seemed to be modulated in hypoxic conditions only. Further research should explore the potential differences in the origin of ELVs between normoxic and local and systemic hypoxic conditions.


Assuntos
Vesículas Extracelulares , Treinamento Intervalado de Alta Intensidade , MicroRNAs , Humanos , Masculino , Altitude , Exossomos , Hipóxia , Adolescente , Adulto Jovem , Adulto
3.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R112-R122, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907783

RESUMO

The purpose of this study is to investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Seventeen healthy [body mass index (BMI): 23.5 ± 0.5 kg·m-2] and 15 prediabetic (BMI: 27.3 ± 1.2 kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia ([Formula: see text] 14.0%). Venous blood samples were taken before (T0), during (T30), and after (T60) exercise, and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81, and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX, and CD9 was upregulated in skeletal muscle after exercise in normoxia, whereas CD9 and CD81 were downregulated in hypoxia. ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


Assuntos
Exercício Físico , Vesículas Extracelulares/metabolismo , Hipóxia/sangue , Corpos Multivesiculares/metabolismo , Contração Muscular , Estado Pré-Diabético/sangue , Músculo Quadríceps/metabolismo , Adulto , Ciclismo , Proteínas de Ligação ao Cálcio/sangue , Estudos de Casos e Controles , Proteínas de Ciclo Celular/sangue , Proteínas de Ligação a DNA/sangue , Complexos Endossomais de Distribuição Requeridos para Transporte/sangue , Humanos , Hipóxia/diagnóstico , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Biogênese de Organelas , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/fisiopatologia , Músculo Quadríceps/fisiopatologia , Distribuição Aleatória , Tetraspanina 29/sangue , Fatores de Tempo , Fatores de Transcrição/sangue
4.
FASEB J ; 35(8): e21773, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324735

RESUMO

Acute hypoxia has previously been suggested to potentiate resistance training-induced hypertrophy by activating satellite cell-dependent myogenesis rather than an improvement in protein balance in human. Here, we tested this hypothesis after a 4-week hypoxic vs normoxic resistance training protocol. For that purpose, 19 physically active male subjects were recruited to perform 6 sets of 10 repetitions of a one-leg knee extension exercise at 80% 1-RM 3 times/week for 4 weeks in normoxia (FiO2 : 0.21; n = 9) or in hypoxia (FiO2 : 0.135, n = 10). Blood and skeletal muscle samples were taken before and after the training period. Muscle fractional protein synthetic rate was measured over the whole period by deuterium incorporation into the protein pool and muscle thickness by ultrasound. At the end of the training protocol, the strength gain was higher in the hypoxic vs the normoxic group despite no changes in muscle thickness and in the fractional protein synthetic rate. Only early myogenesis, as assessed by higher MyoD and Myf5 mRNA levels, appeared to be enhanced by hypoxia compared to normoxia. No effects were found on myosin heavy chain expression, markers of oxidative metabolism and lactate transport in the skeletal muscle. Though the present study failed to unravel clearly the mechanisms by which hypoxic resistance training is particularly potent to increase muscle strength, it is important message to keep in mind that this training strategy could be effective for all athletes looking at developing and optimizing their maximal muscle strength.


Assuntos
Proteínas Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Oxigênio/metabolismo , Treinamento Resistido/métodos , Regulação da Expressão Gênica , Humanos , Masculino , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Adulto Jovem
5.
Am J Physiol Endocrinol Metab ; 320(1): E43-E54, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103453

RESUMO

This study aimed to investigate the mechanisms known to regulate glucose homeostasis in human skeletal muscle of healthy and prediabetic subjects exercising in normobaric hypoxia. Seventeen healthy (H; 28.8 ± 2.4 yr; maximal oxygen consumption (V̇O2max): 45.1 ± 1.8 mL·kg-1·min-1) and 15 prediabetic (P; 44.6 ± 3.9 yr; V̇O2max: 30.8 ± 2.5 mL·kg-1·min-1) men were randomly assigned to two groups performing an acute exercise bout (heart rate corresponding to 55% V̇O2max) either in normoxic (NE) or in hypoxic (HE; fraction of inspired oxygen [Formula: see text] 14.0%) conditions. An oral glucose tolerance test (OGTT) was performed in a basal state and after an acute exercise bout. Muscle biopsies from m. vastus lateralis were taken before and after exercise. Venous blood samples were taken at regular intervals before, during, and after exercise. The two groups exercising in hypoxia had a larger area under the curve of blood glucose levels during the OGTT after exercise compared with baseline (H: +11%; P: +4%). Compared with pre-exercise, an increase in p-TBC1D1 Ser237 and in p-AMPK Thr172 was observed postexercise in P NE (+95%; +55%, respectively) and H HE (+91%; +43%, respectively). An increase in p-ACC Ser212 was measured after exercise in all groups (H NE: +228%; P NE: +252%; H HE: +252%; P HE: +208%). Our results show that an acute bout of exercise in hypoxia reduces glucose tolerance in healthy and prediabetic subjects. At a molecular level, some adaptations regulating glucose transport in muscle were found in all groups without associations with glucose tolerance after exercise. The results suggest that hypoxia negatively affects glucose tolerance postexercise through unidentified mechanisms.NEW & NOTEWORTHY The molecular mechanisms involved in glucose tolerance after acute exercise in hypoxia have not yet been elucidated in human. Due to the reversible character of their status, prediabetic individuals are of particular interest for preventing the development of type 2 diabetes. The present study is the first to investigate muscle molecular mechanisms during exercise and glucose metabolism after exercise in prediabetic and healthy subjects exercising in normoxia and normobaric hypoxia.


Assuntos
Exercício Físico/fisiologia , Teste de Tolerância a Glucose , Hipóxia/metabolismo , Estado Pré-Diabético/metabolismo , Adulto , Limiar Anaeróbio , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/sangue , Insulina/farmacologia , Lipídeos/sangue , Masculino , Músculo Esquelético/metabolismo
6.
Front Bioeng Biotechnol ; 8: 565679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224929

RESUMO

Electrical pulse stimulation (EPS) has been suggested to be a useful method to investigate the mechanisms underlying the adaptations of human skeletal muscle to both endurance and resistance exercise. Although different myotube stimulation protocols mimicking acute and chronic endurance exercise have been developed, no convincing protocol mimicking resistance exercise exists. Adaptations to resistance exercise mainly ensue via the Akt/mTOR pathway. Therefore, the aim of this study was to develop a high frequency EPS protocol mimicking resistance exercise both acutely (100 Hz, 15 V, 0.4 ms with 4 s rest between each contraction for 30 min) and chronically (acute EPS protocol repeated on three consecutive days) on human myotubes. Compared to control conditions, the acute EPS protocol increased the phosphorylation of AktSer473 at 0 h (+91%, p = 0.02) and 3 h (+95%, p = 0.01), and mTORSer2448 at 0 h (+93%, p = 0.03), 1 h (+129%, p = 0.01), and 3 h (+104%, p = 0.0250) post-stimulation. The phosphorylation of ERK1/2Thr202/Tyr204 was increased at 0 h (+69%, p = 0.02) and 3 h (+117%, p = 0.003) post-stimulation compared to control conditions. In addition, both S6K1Thr389 (+157%, p = 0.009) and S6Ser240/244 (+153%, p = 0.003) phosphorylation increased 1 h after EPS compared to control conditions. Chronic EPS protocol increased the phosphorylation of S6K1Thr389 1 h (+105%, p = 0.03) and 3 h (+126%, p = 0.02) and the phosphorylation of S6Ser240/244 1 h (+32%, p = 0.02) after the end of the last stimulation. In conclusion, the present work shows that human muscle cells subjected to EPS can be used as an in vitro model of acute and chronic resistance exercise.

7.
Sports (Basel) ; 8(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217937

RESUMO

BACKGROUND: Benefits of sprint interval training performed in hypoxia (SIH) compared to normoxia (SIN) have been assessed by studies mostly conducted around 3000 m of simulated altitude. The present study aims to determine whether SIH at an altitude as high as 4000 m can elicit greater adaptations than the same training at 2000 m, 3000 m or sea-level. METHODS: Thirty well-trained endurance male athletes (18-35 years old) participated in a six-week repeated sprint interval training program (30 s all-out sprint, 4 min 30 s recovery; 4-9 repetitions, 2 sessions/week) at sea-level (SL, n = 8), 2000 m (FiO2 16.7%, n = 8), 3000 m (FiO2 14.5%, n = 7) or 4000 m (FiO2 13.0%, n = 7). Aerobic and anaerobic exercise components were evaluated by an incremental exercise test, a 600 kJ time trial and a Wingate test before and after the training program. RESULTS: After training, peak power output (PPO) during the incremental exercise test increased (~6%) without differences between groups. The lactate threshold assessed by Dmax increased at 2000 m (+14 ± 12 W) and 4000 m (+12 ± 11 W) but did not change at SL and 3000 m. Mean power during the Wingate test increased at SL, 2000 m and 4000 m, although peak power increased only at 4000 m (+38 ± 38 W). CONCLUSIONS: The present study indicates that SIH using 30 s sprints is as efficient as SIN for improving aerobic and anaerobic qualities. Additional benefits such as lactate-related adaptations were found only in SIH and Wingate peak power only increased at 4000 m. This finding is of particular interest for disciplines requiring high power output, such as in very explosive sports.

8.
FASEB J ; 34(1): 1885-1900, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914659

RESUMO

Acute environmental hypoxia may potentiate muscle hypertrophy in response to resistance training but the mechanisms are still unknown. To this end, twenty subjects performed a 1-leg knee extension session (8 sets of 8 repetitions at 80% 1 repetition maximum, 2-min rest between sets) in normoxic or normobaric hypoxic conditions (FiO2 14%). Muscle biopsies were taken 15 min and 4 hours after exercise in the vastus lateralis of the exercised and the non-exercised legs. Blood samples were taken immediately, 2h and 4h after exercise. In vivo, hypoxic exercise fostered acute inflammation mediated by the TNFα/NF-κB/IL-6/STAT3 (+333%, +194%, + 163% and +50% respectively) pathway, which has been shown to contribute to satellite cells myogenesis. Inflammation activation was followed by skeletal muscle invasion by CD68 (+63%) and CD197 (+152%) positive immune cells, both known to regulate muscle regeneration. The role of hypoxia-induced activation of inflammation in myogenesis was confirmed in vitro. Acute hypoxia promoted myogenesis through increased Myf5 (+300%), MyoD (+88%), myogenin (+1816%) and MRF4 (+489%) mRNA levels in primary myotubes and this response was blunted by siRNA targeting STAT3. In conclusion, our results suggest that hypoxia could improve muscle hypertrophic response following resistance exercise through IL-6/STAT3-dependent myogenesis and immune cells-dependent muscle regeneration.


Assuntos
Exercício Físico/fisiologia , Hipóxia/patologia , Inflamação/patologia , Desenvolvimento Muscular/fisiologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos , Hipóxia/metabolismo , Inflamação/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , RNA Mensageiro/metabolismo , Treinamento Resistido/métodos , Células Satélites de Músculo Esquelético/metabolismo
9.
Front Physiol ; 11: 604274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597890

RESUMO

The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or 'exerkines'). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers or 'mediators' of intercellular communication. Given these findings, there has been a rapidly growing interest in the role of EVs in the multi-systemic, adaptive response to exercise. This review aims to summarize our current understanding of the effects of exercise on MVs and ELVs, examine their role in the exercise response and long-term adaptations, and highlight the main methodological hurdles related to blood collection, purification, and characterization of ELVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...