Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022631

RESUMO

Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep-wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep-wake regulatory network.


Assuntos
Acetamidas/farmacologia , Região Hipotalâmica Lateral/fisiologia , Isoquinolinas/farmacologia , Locus Cerúleo/fisiologia , Orexinas/metabolismo , Sono REM/efeitos dos fármacos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletroencefalografia , Eletromiografia , Agonistas de Receptores de GABA-A/farmacologia , Histamina/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/lesões , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/lesões , Masculino , Norepinefrina/metabolismo , Orexinas/antagonistas & inibidores , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Saporinas , Telemetria , Vigília/efeitos dos fármacos , Zolpidem
2.
Neuropsychopharmacology ; 41(4): 1144-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26289145

RESUMO

The dual hypocretin receptor (HcrtR) antagonist almorexant (ALM) may promote sleep through selective disfacilitation of wake-promoting systems, whereas benzodiazepine receptor agonists (BzRAs) such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. Previous studies have indicated that HcrtR antagonists cause less-functional impairment than BzRAs. To gain insight into the mechanisms underlying these differential profiles, we compared the effects of ALM and ZOL on functional activation of wake-promoting systems at doses equipotent for sleep induction. Sprague-Dawley rats, implanted for EEG/EMG recording, were orally administered vehicle (VEH), 100 mg/kg ALM, or 100 mg/kg ZOL during their active phase and either left undisturbed or kept awake for 90 min after which their brains were collected. ZOL-treated rats required more stimulation to maintain wakefulness than VEH- or ALM-treated rats. We measured Fos co-expression with markers for wake-promoting cell groups in the lateral hypothalamus (Hcrt), tuberomammillary nuclei (histamine; HA), basal forebrain (acetylcholine; ACh), dorsal raphe (serotonin; 5HT), and singly labeled Fos(+) cells in the locus coeruleus (LC). Following SD, Fos co-expression in Hcrt, HA, and ACh neurons (but not in 5HT neurons) was consistently elevated in VEH- and ALM-treated rats, whereas Fos expression in these neuronal groups was unaffected by SD in ZOL-treated rats. Surprisingly, Fos expression in the LC was elevated in ZOL- but not in VEH- or ALM-treated SD animals. These results indicate that Hcrt signaling is unnecessary for the activation of Hcrt, HA, or ACh wake-active neurons, which may underlie the milder cognitive impairment produced by HcrtR antagonists compared to ZOL.


Assuntos
Acetamidas/administração & dosagem , Encéfalo/fisiologia , Isoquinolinas/administração & dosagem , Neurônios/fisiologia , Antagonistas dos Receptores de Orexina/administração & dosagem , Piridinas/administração & dosagem , Fases do Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Eletroencefalografia , Eletromiografia , Histamina/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Zolpidem
3.
Brain Struct Funct ; 221(2): 923-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25431268

RESUMO

Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.


Assuntos
Adenosina/metabolismo , Prosencéfalo Basal/fisiologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Orexinas/antagonistas & inibidores , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismo , Acetamidas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Ácido Butírico , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Ácido Glutâmico , Peptídeos e Proteínas de Sinalização Intracelular , Isoquinolinas/farmacologia , Masculino , Neuropeptídeos/metabolismo , Orexinas/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Sono/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vigília , Zolpidem
4.
Neuropsychopharmacology ; 40(3): 632-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25139062

RESUMO

Cortical interneurons, immunoreactive for neuronal nitric oxide synthase (nNOS) and the receptor NK1, express the functional activity marker Fos selectively during sleep. NREM sleep 'pressure' is hypothesized to accumulate during waking and to dissipate during sleep. We reported previously that the proportion of Fos(+) cortical nNOS/NK1 neurons is correlated with established electrophysiological markers of sleep pressure. As these markers covary with the amount of NREM sleep, it remained unclear whether cortical nNOS/NK1 neurons are activated to the same degree throughout NREM sleep or whether the extent of their activation is related to the sleep pressure that accrued during the prior waking period. To distinguish between these possibilities, we used hypnotic medications to control the amount of NREM sleep in rats while we varied prior wake duration and the resultant sleep pressure. Drug administration was preceded by 6 h of sleep deprivation (SD) ('high sleep pressure') or undisturbed conditions ('low sleep pressure'). We find that the proportion of Fos(+) cortical nNOS/NK1 neurons was minimal when sleep pressure was low, irrespective of the amount of time spent in NREM sleep. In contrast, a large proportion of cortical nNOS/NK1 neurons was Fos(+) when an equivalent amount of sleep was preceded by SD. We conclude that, although sleep is necessary for cortical nNOS/NK1 neuron activation, the proportion of cells activated is dependent upon prior wake duration.


Assuntos
Córtex Cerebral/fisiologia , Homeostase/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Receptores da Neurocinina-1/fisiologia , Fases do Sono/fisiologia , Acetamidas/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Neurônios/imunologia , Óxido Nítrico Sintase Tipo I/imunologia , Piridinas/farmacologia , Ratos , Receptores da Neurocinina-1/imunologia , Privação do Sono/fisiopatologia , Fases do Sono/efeitos dos fármacos , Zolpidem
5.
Sleep ; 36(3): 325-36, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23449602

RESUMO

STUDY OBJECTIVES: Humans with narcolepsy and orexin/ataxin-3 transgenic (TG) mice exhibit extensive, but incomplete, degeneration of hypo-cretin (Hcrt) neurons. Partial Hcrt cell loss also occurs in Parkinson disease and other neurologic conditions. Whether Hcrt antagonists such as almorexant (ALM) can exert an effect on the Hcrt that remains after Hcrt neurodegeneration has not yet been determined. The current study was designed to evaluate the hypnotic and cataplexy-inducing efficacy of a Hcrt antagonist in an animal model with low Hcrt tone and compare the ALM efficacy profile in the disease model to that produced in wild-type (WT) control animals. DESIGN: Counterbalanced crossover study. SETTING: Home cage. PATIENTS OR PARTICIPANTS: Nine TG mice and 10 WT mice. INTERVENTIONS: ALM (30, 100, 300 mg/kg), vehicle and positive control injections, dark/active phase onset. MEASUREMENTS AND RESULTS: During the 12-h dark period after dosing, ALM exacerbated cataplexy in TG mice and increased nonrapid eye movement sleep with heightened sleep/wake fragmentation in both genotypes. ALM showed greater hypnotic potency in WT mice than in TG mice. The 100 mg/kg dose conferred maximal promotion of cataplexy in TG mice and maximal promotion of REM sleep in WT mice. In TG mice, ALM (30 mg/ kg) paradoxically induced a transient increase in active wakefulness. Core body temperature (Tb) decreased after acute Hcrt receptor blockade, but the reduction in Tb that normally accompanies the wake-to-sleep transition was blunted in TG mice. CONCLUSIONS: These complex dose- and genotype-dependent interactions underscore the importance of effector mechanisms downstream from Hcrt receptors that regulate arousal state. Cataplexy promotion by ALM warrants cautious use of Hcrt antagonists in patient populations with Hcrt neurodegeneration, but may also facilitate the discovery of anticataplectic medications. CITATION: Black SW; Morairty SR; Fisher SP; Chen TM; Warrier DR; Kilduff TS. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. SLEEP 2013;36(3):325-336.


Assuntos
Acetamidas/farmacologia , Cataplexia/induzido quimicamente , Isoquinolinas/farmacologia , Narcolepsia/tratamento farmacológico , Sono/efeitos dos fármacos , Análise de Variância , Animais , Estudos Cross-Over , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Eletromiografia/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neuropeptídeos/efeitos dos fármacos , Orexinas , Vigília/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-22679419

RESUMO

We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03-1 µM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...