Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2205769120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972445

RESUMO

Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.


Assuntos
Domesticação , Ecossistema , Humanos , Produtos Agrícolas/genética , Tecnologia , Mudança Climática
3.
New Phytol ; 222(4): 2023-2037, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730057

RESUMO

Humans have domesticated diverse species from across the plant kingdom, yet much of our foundational knowledge of domestication has come from studies investigating relatively few of the most important annual food crops. Here, we examine the impacts of domestication on genetic diversity in a tropical perennial fruit species, mango (Mangifera indica). We used restriction site associated DNA sequencing to generate genomic single nucleotide polymorphism (SNP) data from 106 mango cultivars from seven geographical regions along with 52 samples of closely related species and unidentified cultivars to identify centers of mango genetic diversity and examine how post-domestication dispersal shaped the geographical distribution of diversity. We identify two gene pools of cultivated mango, representing Indian and Southeast Asian germplasm. We found no significant genetic bottleneck associated with the introduction of mango into new regions of the world. By contrast, we show that mango populations in introduced regions have elevated levels of diversity. Our results suggest that mango has a more complex history of domestication than previously supposed, perhaps including multiple domestication events, hybridization and regional selection. Our work has direct implications for mango breeding and genebank management, and also builds on recent efforts to understand how woody perennial crops respond to domestication.


Assuntos
Domesticação , Genômica , Mangifera/genética , Genética Populacional , Geografia , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
4.
Nat Commun ; 9(1): 649, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440741

RESUMO

Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Agricultura , Cicer/classificação , Cicer/fisiologia , Ecologia , Meio Ambiente , Variação Genética , Genoma de Planta , Genômica , Genótipo , Sementes/classificação , Sementes/genética , Sementes/fisiologia
5.
Trends Plant Sci ; 21(5): 418-437, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26698413

RESUMO

Grafting is an ancient agricultural practice that joins the root system (rootstock) of one plant to the shoot (scion) of another. It is most commonly employed in woody perennial crops to indirectly manipulate scion phenotype. While recent research has focused on scions, here we investigate rootstocks, the lesser-known half of the perennial crop equation. We review natural grafting, grafting in agriculture, rootstock diversity and domestication, and developing areas of rootstock research, including molecular interactions and rootstock microbiomes. With growing interest in perennial crops as valuable components of sustainable agriculture, rootstocks provide one mechanism by which to improve and expand woody perennial cultivation in a range of environmental conditions.


Assuntos
Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Produtos Agrícolas/fisiologia , Domesticação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...