Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534122

RESUMO

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Assuntos
Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Mutação , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Aptidão Genética , Ciprofloxacina/farmacologia , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Estreptomicina/farmacologia
2.
mBio ; 15(2): e0315523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214510

RESUMO

Ionophores are antibacterial compounds that affect bacterial growth by changing intracellular concentrations of the essential cations, sodium and potassium. They are extensively used in animal husbandry to increase productivity and reduce infectious diseases, but our understanding of the potential for and effects of resistance development to ionophores is poorly known. Thus, given their widespread global usage, it is important to determine the potential negative consequences of ionophore use on human and animal health. In this study, we demonstrate that exposure to the ionophore monensin can select for resistant mutants in the human and animal pathogen Staphylococcus aureus, with a majority of the resistant mutants showing increased growth rates in vitro and/or in mice. Whole-genome sequencing and proteomic analysis of the resistant mutants show that the resistance phenotype is associated with de-repression of de novo purine synthesis, which could be achieved through mutations in different transcriptional regulators including mutations in the gene purR, the repressor of the purine de novo synthesis pathway. This study shows that mutants with reduced susceptibility to the ionophore monensin can be readily selected and highlights an unexplored link between ionophore resistance, purine metabolism, and fitness in pathogenic bacteria.IMPORTANCEThis study demonstrates a novel link between ionophore resistance, purine metabolism, and virulence/fitness in the key human and animal pathogen Staphylococcus aureus. The results show that mutants with reduced susceptibility to the commonly used ionophore monensin can be readily selected and that the reduced susceptibility observed is associated with an increased expression of the de novo purine synthesis pathway. This study increases our understanding of the impact of the use of animal feed additives on both human and veterinary medicine.


Assuntos
Monensin , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Monensin/farmacologia , Virulência , Staphylococcus aureus , Proteômica , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ionóforos/farmacologia , Ionóforos/metabolismo , Purinas
3.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37884450

RESUMO

Microbial membrane vesicles can carry compounds that inhibit bacterial growth, but how they impact the fitness of the vesicle-producing bacterial species and influence community dynamics remain unexplored questions. To address these questions, we examined the effect of vesicle-enriched secretomes (VESs) in different single-species and multi-species systems. Effects of VESs on single-species growth dynamics were determined for nine bacterial species belonging to four genera (Escherichia, Salmonella, Pseudomonas and Bacillus) in nutrient-rich and poor growth media. Results showed both species-specific and nutrient-dependent effects of the VESs on bacterial growth. The strongest antagonistic effects were observed for VES isolated from the natural isolates of E. coli, while those isolated from P. aeruginosa PA14 affected the highest number of species. We further demonstrated that these VESs altered the competitive abilities of the species involved in two-species (S. Typhimurium LT2 and S. arizonae) and three-species systems (E. coli, S. Typhimurium LT2 and B. subtilis). Finally, using experimental evolution we showed that different bacterial species could rapidly acquire mutations that abrogated the antagonistic effects of VESs. This study demonstrates how VESs can contribute in shaping microbial communities, both by increasing the competitive ability of a given bacterial species and as a driver of genetic adaptation.


Assuntos
Escherichia coli , Secretoma , Escherichia coli/genética , Salmonella , Mutação
4.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627817

RESUMO

Experimental evolution studies have shown that weak antibiotic selective pressures (i.e., when the antibiotic concentrations are far below the minimum inhibitory concentration, MIC) can select resistant mutants, raising several unanswered questions. First, what are the lowest antibiotic concentrations at which selection for de novo resistance mutations can occur? Second, with weak antibiotic selections, which other types of adaptive mutations unrelated to the antibiotic selective pressure are concurrently enriched? Third, are the mutations selected under laboratory settings at subMIC also observed in clinical isolates? We addressed these questions using Escherichia coli populations evolving at subMICs in the presence of either of four clinically used antibiotics: fosfomycin, nitrofurantoin, tetracycline, and ciprofloxacin. Antibiotic resistance evolution was investigated at concentrations ranging from 1/4th to 1/2000th of the MIC of the susceptible strain (MICsusceptible). Our results show that evolution was rapid across all the antibiotics tested, and selection for fosfomycin- and nitrofurantoin-resistant mutants was observed at a concentration as low as 1/2000th of MICsusceptible. Several of the evolved resistant mutants showed increased growth yield and exponential growth rates, and outcompeted the susceptible ancestral strain in the absence of antibiotics as well, suggesting that adaptation to the growth environment occurred in parallel with the selection for resistance. Genomic analysis of the resistant mutants showed that several of the mutations selected under these conditions are also found in clinical isolates, demonstrating that experimental evolution at very low antibiotic levels can help in identifying novel mutations that contribute to bacterial adaptation during subMIC exposure in real-life settings.


Assuntos
Antibacterianos , Fosfomicina , Antibacterianos/farmacologia , Nitrofurantoína , Fosfomicina/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Farmacorresistência Bacteriana/genética
5.
Nat Ecol Evol ; 5(5): 677-687, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664488

RESUMO

Bacteria evolve resistance to antibiotics by a multitude of mechanisms. A central, yet unsolved question is how resistance evolution affects cell growth at different drug levels. Here, we develop a fitness model that predicts growth rates of common resistance mutants from their effects on cell metabolism. The model maps metabolic effects of resistance mutations in drug-free environments and under drug challenge; the resulting fitness trade-off defines a Pareto surface of resistance evolution. We predict evolutionary trajectories of growth rates and resistance levels, which characterize Pareto resistance mutations emerging at different drug dosages. We also predict the prevalent resistance mechanism depending on drug and nutrient levels: low-dosage drug defence is mounted by regulation, evolution of distinct metabolic sectors sets in at successive threshold dosages. Evolutionary resistance mechanisms include membrane permeability changes and drug target mutations. These predictions are confirmed by empirical growth inhibition curves and genomic data of Escherichia coli populations. Our results show that resistance evolution, by coupling major metabolic pathways, is strongly intertwined with systems biology and ecology of microbial populations.


Assuntos
Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação
6.
Elife ; 102021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567250

RESUMO

The first S-adenosyl methionine (SAM) degrading enzyme (SAMase) was discovered in bacteriophage T3, as a counter-defense against the bacterial restriction-modification system, and annotated as a SAM hydrolase forming 5'-methyl-thioadenosine (MTA) and L-homoserine. From environmental phages, we recently discovered three SAMases with barely detectable sequence similarity to T3 SAMase and without homology to proteins of known structure. Here, we present the very first phage SAMase structures, in complex with a substrate analogue and the product MTA. The structure shows a trimer of alpha-beta sandwiches similar to the GlnB-like superfamily, with active sites formed at the trimer interfaces. Quantum-mechanical calculations, thin-layer chromatography, and nuclear magnetic resonance spectroscopy demonstrate that this family of enzymes are not hydrolases but lyases forming MTA and L-homoserine lactone in a unimolecular reaction mechanism. Sequence analysis and in vitro and in vivo mutagenesis support that T3 SAMase belongs to the same structural family and utilizes the same reaction mechanism.


Bacteria can be infected by viruses known as bacteriophages. These viruses inject their genetic material into bacterial cells and use the bacteria's own machinery to build the proteins they need to survive and infect other cells. To protect themselves, bacteria produce a molecule called S-adenosyl methionine, or SAM for short, which deposits marks on the bacteria's DNA. These marks help the bacteria distinguish their own genetic material from the genetic material of foreign invaders: any DNA not bearing the mark from SAM will be immediately broken down by the bacterial cell. This system helps to block many types of bacteriophage infections, but not all. Some bacteriophages carry genes that code for enzymes called SAMases, which can break down SAM, switching off the bacteria's defenses. The most well-known SAMase was first discovered in the 1960s in a bacteriophage called T3. Chemical studies of this SAMase suggested that it works as a 'hydrolase', meaning that it uses water to break SAM apart. New SAMases have since been discovered in bacteriophages from environmental water samples, which, despite being able to degrade SAM, are genetically dissimilar to one another and the SAMase in T3. This brings into question whether these enzymes all use the same mechanism to break SAM down. To gain a better understanding of how these SAMases work, Guo, Söderholm, Kanchugal, Isaksen et al. solved the crystal structure of one of the newly discovered enzymes called Svi3-3. This revealed three copies of the Svi3-3 enzyme join together to form a unit that SAM binds to at the border between two of the enzymes. Computer simulations of this structure suggested that Svi3-3 holds SAM in a position where it cannot interact with water, and that once in the grip of the SAMase, SAM instead reacts with itself and splits into two. Experiments confirmed these predictions for Svi3-3 and the other tested SAMases. Furthermore, the SAMase from bacteriophage T3 was also found to degrade SAM using the same mechanism. This shows that this group of SAMases are not hydrolases as originally thought, but in fact 'lyases': enzymes that break molecules apart without using water. These findings form a starting point for further investigations into how SAM lyases help bacteriophages evade detection. SAM has various different functions in other living organisms, and these lyases could be used to modulate the levels of SAM in future studies investigating its role.


Assuntos
Bacteriófago T3/genética , Liases/genética , Proteínas Virais/genética , Bacteriófago T3/metabolismo , Escherichia coli/virologia , Liases/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Virais/metabolismo
7.
Mol Biol Evol ; 37(5): 1329-1341, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977019

RESUMO

Mobile genetic elements, such as plasmids, phages, and transposons, are important sources for evolution of novel functions. In this study, we performed a large-scale screening of metagenomic phage libraries for their ability to suppress temperature-sensitivity in Salmonella enterica serovar Typhimurium strain LT2 mutants to examine how phage DNA could confer evolutionary novelty to bacteria. We identified an insert encoding 23 amino acids from a phage that when fused with a bacterial DNA-binding repressor protein (LacI) resulted in the formation of a chimeric protein that localized to the outer membrane. This relocalization of the chimeric protein resulted in increased membrane vesicle formation and an associated suppression of the temperature sensitivity of the bacterium. Both the host LacI protein and the extracellular 23-amino acid stretch are necessary for the generation of the novel phenotype. Furthermore, mutational analysis of the chimeric protein showed that although the native repressor function of the LacI protein is maintained in this chimeric structure, it is not necessary for the new function. Thus, our study demonstrates how a gene fusion between foreign DNA and bacterial DNA can generate novelty without compromising the native function of a given gene.


Assuntos
DNA Viral , Fusão Gênica , Repressores Lac/genética , Salmonella typhimurium/genética , Bacteriófagos , Membrana Celular/metabolismo , Repressores Lac/metabolismo , Proteínas Mutantes Quiméricas , Mutação , Fenótipo , Salmonella typhimurium/virologia , Temperatura
8.
J Antimicrob Chemother ; 75(2): 300-308, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633764

RESUMO

OBJECTIVES: To determine the mechanism of resistance to the antibiotic nitroxoline in Escherichia coli. METHODS: Spontaneous nitroxoline-resistant mutants were selected at different concentrations of nitroxoline. WGS and strain reconstruction were used to define the genetic basis for the resistance. The mechanistic basis of resistance was determined by quantitative PCR (qPCR) and by overexpression of target genes. Fitness costs of the resistance mutations and cross-resistance to other antibiotics were also determined. RESULTS: Mutations in the transcriptional repressor emrR conferred low-level resistance to nitroxoline [nitroxoline MIC (MICNOX)=16 mg/L] by increasing the expression of the emrA and emrB genes of the EmrAB-TolC efflux pump. These resistant mutants showed no fitness reduction and displayed cross-resistance to nalidixic acid. Second-step mutants with higher-level resistance (MICNOX=32-64 mg/L) had mutations in the emrR gene, together with either a 50 kb amplification, a mutation in the gene marA, or an IS upstream of the lon gene. The latter mutations resulted in higher-level nitroxoline resistance due to increased expression of the tolC gene, which was confirmed by overexpressing tolC from an inducible plasmid in a low-level resistance mutant. Furthermore, the emrR mutations conferred a small increase in resistance to nitrofurantoin only when combined with an nfsAB double-knockout mutation. However, nitrofurantoin-resistant nfsAB mutants showed no cross-resistance to nitroxoline. CONCLUSIONS: Mutations in different genes causing increased expression of the EmrAB-TolC pump lead to an increased resistance to nitroxoline. The structurally similar antibiotics nitroxoline and nitrofurantoin appear to have different modes of action and resistance mechanisms.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Nitroquinolinas , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação , Nitroquinolinas/farmacologia
9.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164464

RESUMO

The origin of novel genes and beneficial functions is of fundamental interest in evolutionary biology. New genes can originate from different mechanisms, including horizontal gene transfer, duplication-divergence, and de novo from noncoding DNA sequences. Comparative genomics has generated strong evidence for de novo emergence of genes in various organisms, but experimental demonstration of this process has been limited to localized randomization in preexisting structural scaffolds. This bypasses the basic requirement of de novo gene emergence, i.e., lack of an ancestral gene. We constructed highly diverse plasmid libraries encoding randomly generated open reading frames and expressed them in Escherichia coli to identify short peptides that could confer a beneficial and selectable phenotype in vivo (in a living cell). Selections on antibiotic-containing agar plates resulted in the identification of three peptides that increased aminoglycoside resistance up to 48-fold. Combining genetic and functional analyses, we show that the peptides are highly hydrophobic, and by inserting into the membrane, they reduce membrane potential, decrease aminoglycoside uptake, and thereby confer high-level resistance. This study demonstrates that randomized DNA sequences can encode peptides that confer selective benefits and illustrates how expression of random sequences could spark the origination of new genes. In addition, our results also show that this question can be addressed experimentally by expression of highly diverse sequence libraries and subsequent selection for specific functions, such as resistance to toxic compounds, the ability to rescue auxotrophic/temperature-sensitive mutants, and growth on normally nonused carbon sources, allowing the exploration of many different phenotypes.IMPORTANCEDe novo gene origination from nonfunctional DNA sequences was long assumed to be implausible. However, recent studies have shown that large fractions of genomic noncoding DNA are transcribed and translated, potentially generating new genes. Experimental validation of this process so far has been limited to comparative genomics, in vitro selections, or partial randomizations. Here, we describe selection of novel peptides in vivo using fully random synthetic expression libraries. The peptides confer aminoglycoside resistance by inserting into the bacterial membrane and thereby partly reducing membrane potential and decreasing drug uptake. Our results show that beneficial peptides can be selected from random sequence pools in vivo and support the idea that expression of noncoding sequences could spark the origination of new genes.


Assuntos
Resistência Microbiana a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Evolução Molecular , Peptídeos/genética , RNA não Traduzido/genética , Aminoglicosídeos/farmacologia , Escherichia coli/genética , Biblioteca Gênica , Genômica , Fases de Leitura Aberta , Fenótipo , Filogenia
10.
Evolution ; 73(5): 990-1000, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30848832

RESUMO

Bacteria are known to display extensive metabolic diversity and many studies have shown that they can use an extensive repertoire of small molecules as carbon- and energy sources. However, it is less clear to what extent a bacterium can expand its existing metabolic capabilities by acquiring mutations that, for example, rewire its metabolic pathways. To investigate this capability and potential for evolution of novel phenotypes, we sampled large populations of mutagenized Salmonella enterica to select very rare mutants that can grow on minimal media containing 124 low molecular weight compounds as sole carbon sources. We found mutants growing on 18 of these novel carbon sources, and identified the causal mutations that allowed growth for four of them. Mutations that relieve physiological constraints or increase expression of existing pathways were found to be important contributors to the novel phenotypes. For the remaining 14 novel phenotypes, whole genome sequencing of independent mutants and genetic analysis suggested that these novel metabolic phenotypes result from a combination of multiple mutations. This work, by virtue of identifying the genetic and mechanistic basis for new metabolic capabilities, sheds light on the properties of adaptive landscapes underlying the evolution of novel phenotypes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Salmonella enterica/genética , Salmonella enterica/metabolismo , Seleção Genética , Biodiversidade , Carbono/metabolismo , Isoleucina/química , Mutagênese , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Nat Ecol Evol ; 2(8): 1321-1330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807996

RESUMO

One key concept in the evolution of new functions is the ability of enzymes to perform promiscuous side-reactions that serve as a source of novelty that may become beneficial under certain conditions. Here, we identify a mechanism where a bacteriophage-encoded enzyme introduces novelty by inducing expression of a promiscuous bacterial enzyme. By screening for bacteriophage DNA that rescued an auxotrophic Escherichia coli mutant carrying a deletion of the ilvA gene, we show that bacteriophage-encoded S-adenosylmethionine (SAM) hydrolases reduce SAM levels. Through this perturbation of bacterial metabolism, expression of the promiscuous bacterial enzyme MetB is increased, which in turn complements the absence of IlvA. These results demonstrate how foreign DNA can increase the metabolic capacity of bacteria, not only by transfer of bona fide new genes, but also by bringing cryptic bacterial functions to light via perturbations of cellular physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Escherichia coli/fisiologia , Hidrolases/metabolismo , DNA Viral , Escherichia coli/virologia
12.
BMC Evol Biol ; 18(1): 72, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776341

RESUMO

BACKGROUND: Adaptive responses to nutrient limitation involve mutations that increase the efficiency of usage or uptake of the limiting nutrient. However, starvation of different nutrients has contrasting effects on physiology, resulting in different evolutionary responses. Most studies performed to understand these evolutionary responses have focused only on macronutrient limitation. Hence our understanding of adaptation under limitation of other forms of nutrients is limited. In this study, we compared the evolutionary response in populations evolving under growth-limiting conditions for a macronutrient and a major cation. RESULTS: We evolved eight populations of E. coli in nutrient-limited chemostats for 400 generations to identify the genetic basis of the mechanisms involved in efficient usage of two nutrients: nitrogen and magnesium. Our population genomic sequencing work, based on this study and previous work, allowed us to identify targets of selection under these nutrient limiting conditions. Global transcriptional regulators glnGL were targets of selection under nitrogen starvation, while proteins involved in outer-membrane biogenesis (genes from the lpt operon) were targets of selection under magnesium starvation. The protein involved in cell-cycle arrest (yhaV) was a target of selection in both environments. We re-constructed specific mutants to analyze the effect of individual mutations on fitness in nutrient limiting conditions in chemostats and in batch cultures. We further demonstrated that adaptation to nitrogen starvation proceeds via a nutrient specific mechanism, while that to magnesium starvation involves a more general mechanism. CONCLUSIONS: Our results show two different forms of adaptive strategies under limitation of nutrients that effect cellular physiology in different ways. Adaptation to nitrogen starvation proceeds by upregulation of transcriptional regulator glnG and subsequently of transporter protein amtB, both of which results in increased nitrogen scavenging ability of the cell. On the other hand, adaptation to magnesium starvation proceeds via the restructuring of the cell outer-membrane, allowing magnesium to be redistributed to other biological processes. Also, adaptation to the chemostat environment involves selection for loss of function mutations in genes that under nutrient-limiting conditions interfere with continuous growth.


Assuntos
Adaptação Fisiológica , Escherichia coli/fisiologia , Magnésio/farmacologia , Metais/farmacologia , Nitrogênio/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Alelos , Toxinas Bacterianas/genética , Sequência de Bases , Evolução Biológica , Elementos de DNA Transponíveis/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Aptidão Genética , Genoma Bacteriano , Interações Hidrofóbicas e Hidrofílicas , Íons , Lipopolissacarídeos/farmacologia , Mutação com Perda de Função/genética , Análise de Sequência de DNA
13.
Ecol Evol ; 7(14): 5296-5309, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770068

RESUMO

Interactions between different axes of an organism's niche determine the evolutionary trajectory of a population. An extreme case of these interactions is predicted from ecological theory in Liebig's law of the minimum. This law states that in environments where multiple nutrients are in relatively low concentrations, only one nutrient will affect the growth of the organism. This implies that the evolutionary response of the population would be dictated by the most growth-limiting nutrient. Alternatively, it is possible that an initial adaptation to the most limiting nutrient results in other nutrients present in low concentration affecting the evolutionary dynamics of the population. To test these hypotheses, we conducted twelve evolution experiments in chemostats using Escherichia coli populations: four under nitrogen limitation, four under magnesium limitation, and four in which both nitrogen and magnesium are in low concentrations. In the last environment, only magnesium seems to limit growth (Low Nitrogen Magnesium Limited environment, LNML). We observe a decrease in nitrogen concentration in the LNML environment over the course of our evolution experiment indicating that nitrogen might become limiting in these environments. Genetic reconstruction results show that clones adapted to magnesium limitation have genes involved in nitrogen starvation, that is, glnG (nitrogen starvation transcriptional regulator) and amtB (transport protein) to be upregulated only in the LNML environment as compared to magnesium-limiting environments. Together, our results highlights that in low-nutrient environments, adaptation to the growth-limiting nutrient results in other nutrients at low concentrations to play a role in the evolutionary dynamics of the population.

14.
Syst Biol ; 65(3): 432-48, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26865275

RESUMO

The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation.


Assuntos
Biodiversidade , Quirópteros/classificação , Modelos Biológicos , Filogenia , Animais , Quirópteros/fisiologia , Simulação por Computador , Especiação Genética , Clima Tropical
15.
PLoS One ; 10(3): e0118994, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798819

RESUMO

Studies in molecular ecology depend on field-collected samples for genetic information, and the tissue sampled and preservation conditions strongly affect the quality of the DNA obtained. DNA yields from different tissue types have seldom been compared, and the relative performance of storage media has never been directly tested, even though these media may influence DNA degradation under field conditions. We analyzed DNA yield from buccal swabs and wing punches harvested from live bats using nucleic acid quantification as well as quantitative PCR for a single-copy nuclear locus. We also compared DNA yields from wing tissue preserved in three media: ethanol, NaCl-saturated dimethyl sulfoxide (DMSO), and silica desiccant. Wing punches yielded more total DNA than did buccal swabs, and wing tissues preserved in silica beads yielded significantly more total and nuclear DNA than those preserved in DMSO or ethanol. These results show that tissue type and preservation media strongly influence the quantity of DNA obtained from non-lethal genetic samples, and based on these effects we provide recommendations for field collection of tissues for genetic analyses.


Assuntos
Quirópteros/genética , DNA/isolamento & purificação , Preservação de Tecido/métodos , Animais , Quirópteros/anatomia & histologia , Boca , Manejo de Espécimes/métodos , Asas de Animais
16.
Syst Biol ; 63(4): 582-600, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817532

RESUMO

Morphological characters are indispensable in phylogenetic analyses for understanding the pattern, process, and tempo of evolution. If characters are independent and free of systematic errors, then combining as many different kinds of characters as are available will result in the best-supported phylogenetic hypotheses. But since morphological characters are subject to natural selection for function and arise from the expression of developmental pathways, they may not be independent, a situation that may amplify any underlying homoplasy. Here, we use new dental and multi-locus genetic data from bats (Mammalia: Chiroptera) to quantify saturation and similarity in morphological characters and introduce two likelihood-based approaches to identify strongly conflicting characters and integrate morphological and molecular data. We implement these methods to analyze the phylogeny of incomplete Miocene fossils in the radiation of Phyllostomidae (New World Leaf-nosed Bats), perhaps the most ecologically diverse family of living mammals. Morphological characters produced trees incongruent with molecular phylogenies, were saturated, and showed rates of change higher than most molecular substitution rates. Dental characters encoded variation similar to that in other morphological characters, while molecular characters encoded highly dissimilar variation in comparison. Saturation and high rates of change indicate randomization of phylogenetic signal in the morphological data, and extensive similarity suggests characters are non-independent and errors are amplified. To integrate the morphological data into tree building while accounting for homoplasy, we used statistical molecular scaffolds and combined phylogenetic analyses excluding a small subset of strongly conflicting dental characters. The phylogenies revealed the Miocene nectar-feeding †Palynephyllum nests within the crown nectar-feeding South American subfamily Lonchophyllinae, while the Miocene genus †Notonycteris is sister to the extant carnivorous Vampyrum. These relationships imply new calibration points for timing of radiation of the ecologically diverse Phyllostomidae. [Chiroptera; conflict; dentition; morphology; Phyllostomidae; saturation; scaffold; systematic error.].


Assuntos
Quirópteros/anatomia & histologia , Quirópteros/classificação , Fósseis , Filogenia , Animais , Quirópteros/genética , Classificação , Éxons/genética , Genes Mitocondriais/genética , Íntrons/genética , Dados de Sequência Molecular , Dente/anatomia & histologia
17.
Evolution ; 68(5): 1436-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24433457

RESUMO

Selection for divergent performance optima has been proposed as a central mechanism underlying adaptive radiation. Uncovering multiple optima requires identifying forms associated with different adaptive zones and linking those forms to performance. However, testing and modeling the performance of complex morphologies like the cranium is challenging. We introduce a three-dimensional finite-element (FE) model of the cranium that can be morphed into different shapes by varying simple parameters to investigate the relationship between two engineering-based measures of performance, mechanical advantage and von Mises stress, and four divergent adaptive zones occupied by New World Leaf-nosed bats. To investigate these relationships, we tested the fit of Brownian motion and Ornstein-Uhlenbeck models of evolution in mechanical advantage and von Mises stress using dated multilocus phylogenies. The analyses revealed three performance optima for mechanical advantage among species from three adaptive zones: bats that eat nectar; generalized insectivores, omnivores and some frugivores; and bats that specialize on hard canopy fruits. Only two optima, one corresponding to nectar feeding, were consistently uncovered for von Mises stress. These results suggest that mechanical advantage played a larger role than von Mises stress in the radiation of New World Leaf-nosed bats into divergent adaptive zones.


Assuntos
Adaptação Fisiológica , Quirópteros/genética , Comportamento Alimentar , Especiação Genética , Seleção Genética , Crânio/anatomia & histologia , Animais , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Modelos Genéticos
18.
Proc Biol Sci ; 280(1750): 20121890, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23075836

RESUMO

Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.


Assuntos
Mudança Climática , Extinção Biológica , Biota , Geografia , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...