Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315880

RESUMO

DOF (DNA binding with one finger) proteins are part of a plant-specific transcription factor (TF) gene family widely involved in plant development and stress responses. Many studies have uncovered their structural and functional characteristics in recent years, leading to a rising number of genome-wide identification study approaches, unveiling the DOF family expansion in angiosperm species. Nonetheless, these studies primarily concentrate on particular taxonomic groups. Identifying DOF TFs within less-represented groups is equally crucial, as it enhances our comprehension of their evolutionary history, contributions to plant phenotypic diversity, and role in adaptation. This review summarizes the main findings and progress of genome-wide identification and characterization studies of DOF TFs in Viridiplantae, exposing their roles as players in plant adaptation and a glimpse of their evolutionary history. We also present updated data on the identification and number of DOF genes in native and wild species. Altogether, these data, comprising a phylogenetic analysis of 2124 DOF homologs spanning 83 different species, will contribute to identifying new functional DOF groups, adding to our understanding of the mechanisms driving plant evolution and offering valuable insights into their potential applications.

2.
Genet Mol Biol ; 46(3 Suppl 1): e20230142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048778

RESUMO

The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.

3.
Genes (Basel) ; 13(12)2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36553502

RESUMO

Eugenia uniflora is a Brazilian native plant species with great ecological and economic importance. It is distributed throughout the Atlantic forest, where two distinct populations show local adaptation to the contrasting conditions of restinga and riparian forest. Among various TFs described in plants, the DOF TF family has been reported to affect flowering and vascular development, making them promising candidates for characterization in E. uniflora. In this study, 28 DOF genes were identified by a genome-wide analysis, of which 20 were grouped into 11 MCOGs by Bayesian phylogeny, suggesting a shared functionallity between members. Based on RNA-seq experiments, we have detected eight drought responsive genes, and SNPs identification revealed population unique polymorphisms, implying a role in local adapatation mechanisms. Finally, analysis of conserved motifs through MEME revealed 15 different protein motifs, and a promoter region analysis returned 40 enriched TF binding motifs, both reporting novel biological functions circa the DOF gene family. In general, the DOF family is found to be conserved both in sequence and expression. Furthermore, this study contributes to both DOF literature and the genetic exploration of native species, elucidating their genetic potential and bringing to light new research topics, paving the way to future studies.


Assuntos
Eugenia , Myrtaceae , Fatores de Transcrição/genética , Eugenia/genética , Teorema de Bayes , Filogenia , Plantas
4.
Genet Mol Biol ; 41(1 suppl 1): 355-370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29583156

RESUMO

sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.

5.
Genet. mol. biol ; 41(1,supl.1): 355-370, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892484

RESUMO

Abstract sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...